

Universal Acceptance – Report UASG007

Introduction to
Universal Acceptance
(UA)

Universal Acceptance Steering Group (UASG)

23 September 2019

Introduction to Universal Acceptance - Report UASG007 // 2

TABLE OF CONTENTS

About This Document 4

Target Audience 4

Background Concepts 5

Domain Names 5

Country Code Top-level Domains (ccTLDs) 5

Generic Top-level Domains (gTLDs) 5

Domain Name Internationalization 6

The Need for Universal Acceptance (UA) 6

U-labels and A-labels 6

Email Address Internationalization (EAI) 7

Dynamic Link Generation (Linkification) 8

The Dynamic Nature of the Root Zone Registry 8

Universal Acceptance in Action 9

Five Criteria of Universal Acceptance 9

User Scenarios 11

Nonconformance to Universal Practices 12

Technical Requirements for UA Readiness 13

High-Level Requirements 13

Developer Considerations 14

Designing Software for Compatibility and Flexibility 14

Good Practices for Developing and Updating Software to Achieve UA-Readiness 14

Authoritative Sources for Domain Names: DNS Root Zone and IANA Lists 21

Email with IDNs and Why It Is Not the Same as EAI 21

Linkification and Its Challenges 22

Good Practice Recommendations 22

Unicode - Background and Code Point Attributes 23

UTF8, UTF16, and Other Encoding Methods 23

IDNA - A Brief History and Current State 24

Use Cases for Testing 24

Upgrading Software for EAI 25

Advanced Topics 25

Complex Scripts 25

Right-to-Left Languages and Unicode Conformance 25

The Bidi Algorithm 25

The Bidi Rule for Domain Names 27

Joiners 27

Homoglyphs and Similar Characters 28

Introduction to Universal Acceptance - Report UASG007 // 3

Normalization, Case Folding, and String Preparation 28

Case Folding and Mapping 30

Glossary and Other Resources 31

Glossary 31

RFCs and Key Standards 34

Key Standards 37

Online Resources 38

Introduction to Universal Acceptance - Report UASG007 // 4

About This Document

The Internet’s technologies, including its naming components, continually evolve and
change. In recent years, new top-level domains (TLDs), some with traditional ASCII
characters and some with non-ASCII characters (Internationalized Domain Names), have
been approved by the Internet Corporation for Assigned Names and Numbers (ICANN).

Examples include .nyc, .संगठन, .eco, and .католик. However, many applications and

services have not been updated to manage this expanded range of TLDs. In addition,
Internet email standards now allow non-ASCII characters in email addresses, so until
software is upgraded, it will not properly handle these domains and addresses. This affects
the user experience in multiple ways:

▪ Valid email addresses are not recognized or accepted.
▪ Domain names are mistakenly treated as search terms in the address bar of the

browser.

Until software recognizes and processes all domain names and email addresses – a state
known as Universal Acceptance (UA) – it will not be possible to provide a consistent and
positive experience for all Internet users. This document provides a broad introduction to
Universal Acceptance and the efforts being made to assist in the development of Universal
Acceptance-ready software.

Target Audience

This document is intended to introduce Universal Acceptance to a technical audience
(developers, managers, and operators) that may be familiar with some aspects of Internet
technology but not necessarily the details of how new IDNs, domain names, and email
addresses affect the way in which they should be accepted, validated, stored, processed,
and displayed. It represents a starting point for people with diverse technical backgrounds to
begin their exploration of Universal Acceptance.

Introduction to Universal Acceptance - Report UASG007 // 5

Background Concepts

Domain Names

A domain name is a human-friendly identifier for computers and networks on the Internet. It
is customarily represented as a sequence of text labels separated by “dots” (the period or
full-stop punctuation mark); for example, www.example.tld. Each label represents a level in
the Domain Name System (DNS) hierarchy.

At the highest level or “root” of the hierarchy are top-level domain (TLD) labels such as com,
jp, and বাাংলা, which appear at the end of a domain name. Because they appear at the end,

TLDs are sometimes called “suffixes.”

Proceeding down the DNS hierarchy from the root, the next label identifies a subdomain of
the TLD, commonly called a second-level domain; the label after that identifies a subdomain
of the second-level domain, commonly called a third-level domain; and so on, with each of
the labels separated from its neighbor by a dot. For example, a domain name with three
levels might look like this:

Country Code Top-level Domains (ccTLDs)

Some TLDs are delegated to specific countries or territories. These are called country code
top-level domains (ccTLDs). In the past, all ccTLDs were two letters matching the ISO 3166
two-letter code assigned to the country or territory by the International Organization for
Standardization. Since 2010, there have also been internationalized ccTLDs that represent
the name of a country or territory in that country or territory’s own script.

Generic Top-level Domains (gTLDs)

Most TLDs that are not ccTLDs are called generic top-level domains (gTLDs), which are
either open to anyone or restricted to the members of a defined community. These include
the familiar .com, .net, and .org as well as more recent additions.

Through the New gTLD Program – an initiative coordinated by ICANN – the Domain Name
System (DNS) has expanded exponentially through the introduction of new generic top-level
domains. These new gTLDs can represent brands, communities of interest, geographic
areas (cities, regions), and more.

https://newgtlds.icann.org/en/about/program

Introduction to Universal Acceptance - Report UASG007 // 6

Domain Name Internationalization

Domain names were originally limited to a subset of ASCII characters (letters a-z, digits 0-9,
and the hyphen “-“). Since the earliest .com registration, symbolics.com in 1985, the number
and characteristics of domain names have expanded to reflect the needs of the ever-
increasing global use of the Internet as a communal resource. Today, the majority of Internet
users are non-English speakers; however, the dominant language used on the Internet is
English. To help with the internationalization of the Internet, in 2003 the Internet Engineering
Task Force (IETF) started releasing standards providing technical guidelines for the
deployment of Internationalized Domain Names (IDNs) through a translation mechanism to
support non-ASCII representations of domain names in any Unicode-supported script (e.g.,

普遍接受-测试.世界, ua-test.كاثوليك,etc.).

The ICANN Board of Directors approved the process to introduce new IDN ccTLDs in
October 2009, with the first IDN ccTLDs added to the root zone in May 2010. In June 2011,
the Board approved and authorized the launch of the New gTLD Program, which included
new ASCII as well as IDN TLDs. The first batch of TLDs from this program was added to the
root zone in 2013.

The Need for Universal Acceptance (UA)

A decade after the IETF released its IDN-related guidelines, and through the ICANN New
gTLD Program, more than 1,000 new TLDs are now active. However, some software and
applications remain outdated and are unable to handle these new TLDs. This causes
problems for Internet users, including those who use non-ASCII characters and scripts.
Universal Acceptance ensures that all valid domain names and email addresses are
accepted, validated, stored, processed, and displayed correctly and consistently by all
Internet-enabled applications, devices, and systems. For example, every valid web address
resolves to the expected resource on the correct website and every valid email address
results in mail delivery to the expected recipient.

The Universal Acceptance Steering Group (UASG) is an Internet community initiative,
supported by ICANN, that is tasked with undertaking activities that will effectively promote
Universal Acceptance and help ensure a consistent and positive experience for Internet
users globally.

U-labels and A-labels

Domain names that use non-ASCII characters are called Internationalized Domain Names
(IDNs). The internationalized portion of a domain name can be in any label—not just the
TLD.

Since the DNS itself previously only used ASCII, it was necessary to create an additional
encoding to allow non-ASCII Unicode code points to be represented as ASCII strings. The
algorithm that implements this Unicode-to-ASCII encoding is called Punycode; the output
strings are called A-Labels. A-Labels can be distinguished from an ordinary ASCII label
because they always start with the following four characters:

xn--

Introduction to Universal Acceptance - Report UASG007 // 7

These characters are called the ACE prefix.1

The Punycode transformation is reversible: it can transform from Unicode to an A-Label and
from an A-label back to a string of Unicode characters (known as a U-Label).

The only standard use of the Punycode algorithm is for expressing internationalized
domains. While one could hypothetically encode other UTF-8 strings using Punycode, that
would be non-standard and would not interoperate with other systems.

Examples of (imaginary) IDNs

U-label version A-label version

example.みんな example.xn--q9jyb4c

大坂.info xn--uesx7b.info

みんな.大坂 xn--q9jyb4c.xn--uesx7b

Email Address Internationalization (EAI)

Email addresses contain two parts:

▪ A local part (before the “@” character).
▪ A domain part (after the “@” character).

Because both left-to-right (LTR) and right-to-left (RTL) scripts can be used in email
addresses and domain names, “before” and “after” should be understood with respect to the
directionality of the script.

Examples of (imaginary) EAI Addresses

user@example.みんな

user@大坂.info

用戶@example.lawyer

Uses IDN TLD

Uses IDN second-level domain

Uses Unicode local part and new gTLD

1 ASCII Compatible Encoding (ACE) prefix which distinguishes Punycode-encoded labels from other

ASCII labels.

Introduction to Universal Acceptance - Report UASG007 // 8

Example of Right-to-Left text in an EAI Address

 LTR RTL

In an internationalized email address, the domain part can contain any domain name,
including those with new TLDs, and can contain Unicode U-labels. The local part is not a
domain name and can in principle contain nearly any Unicode character, although in practice
mail systems will limit the characters used in their mailbox names.

The term Email Address Internationalization (EAI) is often used to describe the use of
internationalized addresses in email.

Dynamic Link Generation (Linkification)

Modern software such as popular word processing or spreadsheet applications sometimes
allows a user to create a hyperlink simply by typing in a string that looks like a web address,
email address, or network path. For example, typing “www.icann.org” into an email message
may automatically result in a clickable link to http://www.icann.org if the app recognizes
“www.” as a special prefix or “.org” as a special suffix.

When it is used, linkification should work consistently for all well-formed web addresses,
email addresses, or network paths, and not just some. Accurate linkification is difficult and
depends on the context of the text (for example, in some languages “www” doesn’t indicate
a web address), so it is not further addressed here.

The Dynamic Nature of the Root Zone Registry

The DNS is a large distributed database divided into sections called zones. The section that
contains all TLDs is called the root zone because it is conceptually at the root of the tree of
DNS names. All DNS zones, including the root zone, are updated as required. As new TLDs
are added or old TLDs are retired, their names are added to or removed from the root zone.

This means that any fixed list of TLDs, such as a list stored in an application or in a file, will
eventually and inevitably become out of date. To reliably validate the TLD in a domain name,
software can check it online with a DNS query, or if it uses a file, refresh the file on a regular
basis. These are both described in more detail later.

http://www.icann.org/

Introduction to Universal Acceptance - Report UASG007 // 9

Universal Acceptance in Action

Five Criteria of Universal Acceptance

Universal Acceptance is the state in which all valid domain names and email addresses are
accepted, validated, stored, processed, and displayed correctly and consistently by all
Internet-enabled applications, devices and systems. The five criteria of Universal
Acceptance are described below.

1. Accept2

Accepting occurs whenever an email address or a domain
name is received as a string of characters from a user
interface, from a file, or from an API used by a software
application or online service.

Applications and services allow domain names and email
addresses to be:

▪ Entered via user interfaces, or
▪ Received from other applications and services via APIs.

2. Validate3

Validation may occur in many places whenever an email
address or a domain name is either received or emitted as a
string of characters by an application or online service.

Validation is intended to ensure that the entered information is
either valid or at least definitely not invalid. Validation ensures the
information has the correct syntax and may make other checks.
For domain names and email addresses, many programmers have
traditionally relied on ad hoc validation methods such as checking
that a TLD is within length limits, or that the characters are from
the ASCII character set. However, these methods are based on
assumptions that are no longer applicable because the Internet is
changing:

▪ Domain names and email addresses can now include non-
ASCII Unicode characters.

▪ The list of TLDs is changing.
▪ Any label in a domain name, including the TLD label, can be

up to 63 characters long.4

It remains possible to validate TLDs using other techniques, as
described later.

2 Accepting is treated as distinct from Validating in this document. In practice, the actions may

overlap.
3 Accepting and Processing are treated as distinct from Validating in this document. In practice, the
actions may overlap.
4 The 63-character length limit applies to the label itself if it is an ASCII label, or to the A-label form of
the label if it is an IDN.

Introduction to Universal Acceptance - Report UASG007 // 10

3. Store

Storage occurs when an email address or a domain name is
stored as a string of characters in a database or file used by a
software application or online service and later retrieved by
the same or other software applications.

Applications and services might require long-term and/or transient
storage of domain names and email addresses. Regardless of the
lifetime of the data, it must be stored in:

▪ Formats defined by an Internet-standard Request for
Comments (RFC), or (less desirably)

▪ Alternative formats that can be translated to and from RFC-
defined formats.

Although Unicode in DNS names and email addresses are stored
as UTF-8, other formats may be encountered in legacy code. See
the Good Practices section below.

4. Process5

Processing occurs when an email address or a domain name
is used by an application or service to perform an activity
such as searching or sorting a list, or is transformed into an
alternative format (such as turning U-labels into A-labels).

Additional validation may occur during processing. The ways in
which email addresses and domain names may be processed is
limited only by the imagination of application developers, but it is
important not to make assumptions (e.g., that email addressed to
pākehā@tetaurawhiri.govt.nz is intended for a person in New
Zealand) that depend on policies outside of the DNS.

5. Display

The Display action occurs when an email address or a domain
name is rendered within a user interface.

Displaying domain names and email addresses is usually, but not
always, straightforward when the scripts used in the name or
address are supported in the underlying operating system and
when the strings are stored in Unicode.6 If these conditions are not
met, application-specific transformations may be required. Further,
even if the underlying operating system does support the strings,
display can be complicated if, for example, RTL and LTR scripts
are mixed, or the overall directionality of text is unclear.

5 Processing is treated as distinct from Validating in this document. In practice, the actions may

overlap.

6 It is important to recognize that display is not straightforward, even when these conditions are met
for some complex scripts.

Introduction to Universal Acceptance - Report UASG007 // 11

User Scenarios

The examples and definitions above may give the impression that Universal Acceptance is
only about computer systems and online services. The reality, however, is that it’s also
about the people using those systems and services.

Below are some examples of activities that require Universal Acceptance:

Registering a new TLD An organization adopts a “brand” TLD to offer its
customers a differentiated customer experience by
providing email addresses in the format: customername
@example.brand.

Universal Acceptance means:

▪ Web sites and applications accept these
“@example.brand” email addresses as they would
with older TLDs such as .com, .net, .org.

Accessing a gTLD A user accesses a website whose domain name contains
a new TLD by typing an address into a browser or clicking
a link in a document.

Universal Acceptance means:

▪ Even though the TLD is new, the user’s browser
displays the web address in its native form and
accesses the site as the user expects. The browser
does not display domain names as A-labels to the
user unless it benefits the user in some way.

Using an email address
containing a new gTLD
as an online identity

A user acquires an email address with the domain portion
using a new gTLD and uses this email address as their
identity for accessing their bank and airline loyalty
accounts.

Universal Acceptance means:

▪ Even though the domain used in the email address
is new, the bank or airline site accepts the address
the same way in which it accepts an address in an
older TLD such as .biz or .eu.

Accessing an IDN

A user accesses an IDN URL by typing the URL into a
browser or clicking a link in a document.

Universal Acceptance means:

▪ Even if the domain name contains characters
different than the language settings on the user’s
computer, any browser the user wishes to use will
display the web address as expected and access
the site successfully.

Introduction to Universal Acceptance - Report UASG007 // 12

Using an
internationalized email
address for email

A user has acquired a new email address which includes

non-ASCII characters in the domain name (e.g., īnfo@普

遍接受-测试.世界).

Universal Acceptance means:

▪ The user can send to and receive from any email
address, using any email client.

Using an
internationalized email
address as an online
identity

A user acquires a non-ASCII email address and uses this
email address as their identity for accessing their bank
and airline loyalty accounts.

Universal Acceptance means:

▪ The bank or airline site accepts the new identity
exactly as if it were any other email identity.

Dynamically creating a
hyperlink in an
application

A user types a web address into a document or email
message.

Universal Acceptance means:

▪ The rules used by the application to automatically
generate a hyperlink are the same if the address is
non-ASCII or contains a new TLD.

Developing an
application

A developer writes an app that accesses web resources.

Universal Acceptance means:

▪ The tools used by the developers include libraries
that enable Universal Acceptance by supporting
new TLDs and IDNs.

Nonconformance to Universal Practices

The following are considered to be poor practice:

✖ Displaying A-labels to the user without a corresponding user benefit, such as to
show the mapping between a U-label and a A-label.

✖ Requiring a user to enter A-labels when signing up for a new email address or
requiring a user to enter A-labels when signing up for a new hosted domain.

✖ Validating the syntax of domain name or email address using out of date
criteria or non-authoritative online domain name resources.

✖ Using an outdated list of TLDs even though new TLDs are regularly being
added and deleted.

✖ Exposing internal use of A-labels to users.

For example, converting domains in EAI addresses to A-labels when replying
to an EAI user.

Introduction to Universal Acceptance - Report UASG007 // 13

✖ Treating some domain names as search terms rather than as domain names
because the application does not recognize them as such.

✖ Setting spam blockers to automatically block entire (new) TLDs without
evidence of abuse.

Technical Requirements for UA Readiness

For an application or website to be UA-ready, it must meet a variety of requirements.

High-Level Requirements

An application or service that supports Universal Acceptance (UA):

1. Supports all domain names regardless of length or character set.
See RFC 5892.

2. Allows all of the character sets that are valid for domain names and email
addresses.

Accept Unicode code points as well as ASCII.

3. Can correctly render all code points in Unicode strings.

See RFC 3490. Note that Unicode regularly adds new code points, so this is a moving
target.

4. Can correctly render right-to-left (RTL) strings such as those in Arabic and
Hebrew.

For information about RTL scripts, see RFC 5893.

5. Can communicate data between applications and services in UTF-8 and, where
needed, other encodings that can be converted to and from UTF-8.

For information about UTF-8, see RFC 3629.

6. Offers public and private APIs that support UTF-8.

Private APIs apply only to inter-service calls by the same vendor.

7. Treats EAI addresses correctly.

In particular, doesn’t convert IDNs in addresses to A-labels.

8. Can send email to and receive email from recipients regardless of domain name
or character set.

 See RFC 6530.

https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892
https://www.ietf.org/rfc/rfc3490.txt
https://www.ietf.org/rfc/rfc3490.txt
https://tools.ietf.org/html/rfc5893
https://tools.ietf.org/html/rfc5893
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc6530

Introduction to Universal Acceptance - Report UASG007 // 14

9. Stores user data in formats that support Unicode and is convertible to and
from UTF-8.

 Such conversions would be visible only to the operator of the product or service.

10. Supports all top-level domain names in the authoritative ICANN TLD list
regardless of length or character set.

See the authoritative list at https://data.iana.org/TLD/.

Developer Considerations

Since many existing software systems contain hardcoded assumptions about domains and
email addresses, code changes may be required to recognize IDNs, new TLDs, and EAI
mail addresses. This section discusses how developers can incorporate code changes that
will enable Universal Acceptance.

Designing Software for Compatibility and Flexibility

The Robustness Principle, as articulated by Jon Postel in RFC 793, is a general design
guideline for software development:

“Be conservative in what you do; be liberal in what you accept from others.”

That is, be conservative in what you send: in any area in which a specification might be
ambiguous or unclear, avoid anything that could surprise others. On the other hand, when
receiving, accept anything that is plausibly valid. This does not mean changing code to work
around clear mistakes in other implementations since that leads to an undocumented and
“undebuggable” mess.

Good Practices for Developing and Updating Software to Achieve UA-Readiness

Accept

✔ Display names as Unicode whenever possible.

Users should be allowed, but not required, to enter domain names as A-labels
rather than U-labels. However, U-labels should be shown by default, with A-
labels shown to the user only when it provides a benefit.

! Don’t generate EAI addresses with A-labels but do be able to handle them if
presented by someone else’s software.

✔ Any user interface element requiring a user to type a domain name or email
address must accept long names. ASCII domain names can have up to 63
characters in each label and can be in total up to 253 bytes. UTF-8 labels can
be much longer than ASCII labels and the total length can be up to 670 bytes.

https://data.iana.org/TLD/
https://tools.ietf.org/html/rfc793

Introduction to Universal Acceptance - Report UASG007 // 15

Remember that the UTF-8 code for most Unicode code points takes more than
one byte.

▪ See RFC 1035.

Validate

✔ Validate only as appropriate.

Validate only if it is required for the operation of the application or
service. This is the most reliable way to ensure that all valid domain names are
accepted into your systems.

✔ Recognize that syntactically correct inputs may represent domain names or
email addresses that are currently in use on the Internet. That may or may not
be valid depending on the application.

! When you validate, consider the following:

▪ Verify the TLD portion of a domain name against an authoritative table.
IANA publishes the list of top-level domains at:

 https://data.iana.org/TLD/tlds-alpha-by-domain.txt

 See also: https://www.icann.org/en/system/files/files/sac-070-en.pdf

▪ Query the domain name against the DNS.

 The GETDNS API (http://getdnsapi.net/) is a highly portable way to
query the DNS.

 Most operating systems also have a native DNS query API.

▪ Require repeated entry of an email address to detect typing errors.

▪ Validate the characters in labels by checking that each label follows the
Internationalizing Domain Names in Applications (IDNA 2008) rules.

 See RFC 5892

▪ Limit validation of labels itself to a small number of whole-label rules
defined in the RFCs.

 See RFC 5894

▪ Ensure that the product or feature handles numbers correctly.

 For example: Arabic-Indic digit characters should be treated as
numbers in numeric input fields, as well as ASCII digits.

 Note that Arabic-Indic digits are valid in U-labels but are not
considered equivalent to ASCII digits in that context.

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://data.iana.org/TLD/tlds-alpha-by-domain.txt
%20
https://www.icann.org/en/system/files/files/sac-070-en.pdf
http://getdnsapi.net/
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5894
https://tools.ietf.org/html/rfc5894
https://tools.ietf.org/html/rfc5894

Introduction to Universal Acceptance - Report UASG007 // 16

Store

✔ Applications and services should support the most current Unicode standards.

✔ Information should be stored in the UTF-8 format whenever possible.
Some systems may require legacy support for UTF-16 as well, but generally
UTF-8 is preferred. UTF-7 is obsolete, and UTF-32 is too bulky for file storage.
The strings should be normalized when appropriate (some normalization can in
some context result in loss of information).

! Consider all end-to-end scenarios before converting between A-Labels and U-
Labels when storing.

In new applications, it is better to maintain only U-Labels in a file or database,
because it simplifies searching, sorting, and presentation. However, conversion
may have implications when interoperating with older, non-Unicode-enabled
applications and services.

✔ Tag email addresses and domain names as such in storage for easier access.
Filing email addresses and domain names in the “author” field of a document
or “contact info” in a log file have led to the loss of the original address.

✔ Regardless of the way addresses and domain names are stored, you must be
able to match strings in multiple formats.

For example, a search for example.みんなshould also find example.xn--

q9jyb4c.

Process

✔ Ensure all web server and MIME mail responses have UTF-8 specified in the
content type.

✔ Specify UTF-8 in the web server http header.
▪ It is important to ensure that the encoding is specified on every

response.

! Consider context before converting A-Labels to U-Labels and vice versa during
processing.

It is desirable to maintain only U-Labels in a file or database as it simplifies
searching and sorting. However, conversion may have implications when
interoperating with older, non-Unicode-enabled applications and services.

Introduction to Universal Acceptance - Report UASG007 // 17

✔ Ensure that the product or feature handles sort order, searches, and collation
according to locale and language specifications, and that it addresses
multilanguage searching and sorting.

✖ Don’t use percent encoding for labels in domain names:

▪ example.みんな is correct

▪ example.%E3%81%BF%E3%82%93%E3%81%AA is not correct.

✔ Since the Unicode standard is continually expanding, code points not defined
when the application or service was created should be checked to ensure they
don’t produce erroneous or confusing output.

Missing fonts in the underlying operating system may result in non-displayable
characters (frequently a small box is used to represent these), but this
situation should not result in a crash or error message.

✔ Use supported Unicode-enabled APIs.

✔ Use the latest Internationalized Domain Names in Applications (IDNA 2008)
Protocol and Tables documents for IDNs:

▪ RFC 5891
▪ RFC 5892

✔ Process text in UTF-8 format wherever possible.

✔ Coordinate upgrades of applications and the services they depend on.
If the server is Unicode and client is non-Unicode, or vice versa, the data will
need to be converted in every transaction, which is error prone and can be
slow.

✔ When doing character transformation, text strings may grow or shrink
substantially. Each UTF-8 code point may be from 1 to 4 bytes, and in some
cases a single character in another encoding may correspond to several UTF-8
code points or vice versa.

Display

✔ Display all Unicode code points that are supported by the underlying operating
system.

Modern operating systems all have Unicode support, but their rendering
engines are not always correct for all scripts and languages. Provide character
rendering in applications only when correct rendering is not available from the
target operating system(s).

✔ When developing an app or a service consider the languages supported and
make sure operating systems and applications cover those languages.

https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892

Introduction to Universal Acceptance - Report UASG007 // 18

✔ Convert A-labels to U-labels before display.

For example, the end user should see “example.みんな” rather than

“example.xn--q9jyb4c”. (This conversion is an example of UA-ready
processing).

✔ Display domain names as U-labels by default.

Display A-labels to the user only when it provides a benefit.

! Be aware that mixed-script domain names are possible.
▪ Some Unicode characters may look the same to the human eye, but

different to computers; for example, Latin O, Cyrillic O, and Greek
omicron O.

▪ Mixed-script strings are common in closely related scripts (e.g.,
Japanese Kanji, Katakana, Hiragana, and Romaji.) Otherwise mixed
scripts may be intended for malicious purposes, such as phishing. Use
Unicode Technical Standard #39, Unicode Security Mechanisms,7 to
check that the scripts in a Unicode sequence follow good practice.

▪ If the user interface calls the strings to the user’s attention, be sure that it
does so in a way that is not prejudicial to users of non-Latin scripts.

Learn more about Unicode Security Considerations at:
http://unicode.org/reports/tr36.

✔ Be aware of unassigned and disallowed characters for domain names.
▪ See RFC 5892

Unicode

✔ Use supported Unicode-enabled APIs.

✖ Use standard, well-debugged APIs for:
▪ String format conversions.
▪ Determining which script comprises a string.
▪ Determining if a string contains a mix of scripts.
▪ Unicode normalization/decomposition.

7 See https://www.unicode.org/reports/tr39/#Restriction_Level_Detection

http://unicode.org/reports/tr36
http://unicode.org/reports/tr36
http://unicode.org/reports/tr36
https://tools.ietf.org/rfc/rfc5892.txt
https://tools.ietf.org/rfc/rfc5892.txt
https://www.unicode.org/reports/tr39/#Restriction_Level_Detection

Introduction to Universal Acceptance - Report UASG007 // 19

✖ Don’t use UTF-7 and limit the use of UTF-32.
▪ UTF-7 is obsolete.
▪ UTF-32 uses four bytes for each code point. Since each code point

takes the same amount of space and can be directly indexed in arrays,
it’s convenient to use within program code, but may be too bulky for
storage in files and databases.

✖ Don’t use UTF-16 except where it is explicitly required (as in certain Windows
APIs, and Javascript applications).

In UTF-16, 16 bits can only represent characters from 0x0 to 0xFFFF. Values
above this range (0x10000 to 0x10FFFF) use pairs of pseudo-characters
known as surrogates. If handling of surrogate pairs is not thoroughly tested, it
may lead to tricky bugs and potential security holes.

✔ Use UTF-8 in cookies so they can be read correctly by applications.

✔ Use IDNA 2008 Protocol and Tables documents:
▪ RFC 5891
▪ RFC 5892

✖ Do not use IDNA 2003 which has been superseded by IDNA 2008.

! Maintain IDNA and Unicode tables that are consistent with regard to versions.
For example, unless the application actually executes the classification rules in
the Tables document to interpret code points as entered (RFC 5892), its IDNA
tables must be derived from the version of Unicode that is supported on the
system. The tables do not need to reflect the latest version of Unicode, but they
must be consistent.

✔ Validate labels using IDNA 2008 whole-label rules.
▪ In some contexts, further validation may be appropriate; for example, if

the application knows what scripts are allowed in the domain names it
uses.

General

✔ Use authoritative resources to validate domain names.
Do not make outdated ad hoc assumptions, such as “all TLDs are 6 characters
or shorter.”

✔ Ensure that the product or feature handles numbers correctly.
For example, ASCII numerals and Asian ideographic number representations
should all be treated as numbers in numeric contexts.

http://tools.ietf.org/html/rfc5891
http://tools.ietf.org/html/rfc5891
http://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5892

Introduction to Universal Acceptance - Report UASG007 // 20

! Look for mail addresses that may be EAI addresses in unexpected places:
▪ Artist/author/photographer/copyright metadata.
▪ Font metadata.
▪ DNS contact records.
▪ Binary version information.
▪ Support information.
▪ OEM contact information.
▪ Registration, feedback, and other forms.

! Restrict the code points allowed when generating new domain names and
email addresses:

All products that use email addresses must accept internationalized email
addresses, allowing most UTF-8 printing characters in the local part. However,
an app or service need not allow all of these characters when a user creates a
new IDN or EAI address.

Preventing certain IDNs or email addresses from being created in the first
place can mitigate some likely security and accessibility concerns. (NOTE:
Good practice would still require software to accept such strings if presented.)

! Be aware that Universal Acceptance cannot always be measured through
automated test cases alone.

For example, testing how an app or protocol handles network resource may not
always be possible and sometimes it is best to verify the compliance through
functional spec and design review.

! Don’t assume that because a component does not directly call name-resolution
APIs or directly use email addresses, it does not affect it.

Understand how domain names are obtained by the component—it is not
always through user interaction. The following are some examples on how the
component can get a domain name:

▪ Group policy.
▪ LDAP query.
▪ Configuration files.
▪ Windows Registry.
▪ Transferred to or from another component or feature.

✔ Perform code reviews to avoid buffer overflow attacks.
▪ In Unicode, strings may expand or shrink when case folded or

normalized.
▪ When doing character conversion, text may grow or shrink substantially.

Other challenges

Introduction to Universal Acceptance - Report UASG007 // 21

Mechanism to detect
and convert
character sets

Some older email applications used local character encodings and
did not have a way to detect and convert text to and from UTF-8
as needed. This was especially true for the email headers (TO,
CC, BCC, Subject).

Managing multiple
email addresses as a
single user identity

When a user has multiple email addresses it may be tricky to
manage these addresses as a single user identity.

Email programs can direct traffic addressed to such aliases to the
same mailbox, but applications may still treat the addresses as
different identities.

Authoritative Sources for Domain Names: DNS Root Zone and IANA Lists

There are two sources for the authoritative list of TLDs. The first source is the DNS root
zone itself. It is Domain Name Security Extensions (DNSSEC)-signed, so its contents can be
authenticated by a DNSSEC-aware name server, although its contents are fairly hard to
parse as a text file. Another source is the text file of TLDs that IANA publishes (one TLD per
line in alphabetical order). These files are on https web servers, so it is good practice to
check that the site’s Transport Layer Security (TLS) certificate is valid when downloading to
be sure you’re getting the right file.

You can obtain the list of TLDs from either of the following links:

▪ https://www.internic.net/domain/root.zone (root zone file)
▪ https://data.iana.org/TLD/tlds-alpha-by-domain.txt (text TLD file)

Email with IDNs and Why It Is Not the Same as EAI

Email Address Internationalization (EAI) mail prefers UTF-8 domain names; ASCII coded A-
Labels are discouraged. Some mail systems have made partial provisions for email
addresses that include IDNs rather than provide full EAI support. Because IDNs can be
represented as ASCII A-labels, some existing software allows the IDNs in an email address
to be represented in ASCII or Unicode. For example, some software will treat these two IDN
addresses equivalently for all purposes (sending, receiving, and searching):

user@example.みんな = user@example.xn--q9jyb4c

However, some software will not treat these addresses as equivalent even though both are

valid, because it does not convert an A-label (“xn--q9jyb4c”) into its U-label equivalent (“み

んな”) before comparing. This can result in an unpredictable user experience. The user

experience may become especially confusing if some software converts U-labels into A-
labels for “compatibility.” As the messages are replied-to or forwarded, the addresses that
are visibly different to a user, or which fail to search and sort as expected, may increase.

As in the example below, some software may attempt to convert the local part of the email
address using Punycode, the algorithm that is used to convert A-labels into U-labels (and
vice versa). This sort of conversion is invalid and will create invalid, undeliverable
addresses.

https://www.internic.net/domain/root.zone
https://data.iana.org/TLD/tlds-alpha-by-domain.txt

Introduction to Universal Acceptance - Report UASG007 // 22

Never try to convert the local part of an email address into a different form

✔ 用戶@example.みんな

✖ xn--youq53b@example.xn--q9jyb4c

Robust UA-ready software and services should be able to handle and treat all these formats
correctly and should be able to handle both UTF-8 local parts and UTF-8 U-labels in
addresses, while also accepting A-labels in addresses for backward compatibility.

Linkification and Its Challenges

Modern software sometimes allows a user to automatically create a hyperlink simply by
typing in a string that looks like a web address, email name, or network path. For example,
typing “www.icann.org” into an email message may automatically result in a clickable link to
http://www.icann.org if the application recognizes “www.” as an initial label or “.org” as a
TLD.

Linkification is the action whereby an application accepts a string and dynamically
determines whether it should create a hyperlink to an Internet Location (http:// or https://) or
an email address (mailto:). Linkification, if it happens, should work consistently for all well-
formed web addresses, email names, and network paths.

Linkification uses algorithms and rules created by software developers to determine whether
or not a string should be interpreted as a link. Related to this is how people can identify a
string as a domain name. While browsers, email clients, and word processors are obvious

places, there are many more applications that make these decisions.  

Good Practice Recommendations

1. Attempt to linkify based on explicit protocol prefixes (e.g. “https://”, ftp://”, “mailto:”)

but only complete the action if the rest of the string is well-formed.

Example String Expected Behavior/ Result

example.com No linkification because protocol is absent and not
inferred.

http://example.com Create hyperlink because protocol is explicit.

http:example.com No linkification because of bad syntax (missing //).

http://example.a No linkification because “a” is not a TLD.

http://example..ab No linkification because of bad syntax (consecutive
dots).

http://普遍接受-测试.世界 Create hyperlink because protocol is explicit.

2. Attempt to linkify based on implicit protocol prefixes (e.g. “www” infers “http://www”).

http://www.icann.org/
http://www.icann.org/
http://www.icann.org/
http://www.icann.org/
http://example.a/
http://example..ab/

Introduction to Universal Acceptance - Report UASG007 // 23

Example String Expected Behavior/ Result

www.example.com Create hyperlink because protocol is implied8

label@example.com Create mailto: label@example.com because protocol
is implied.

3. The HTML surrounding URLs that contain bidirectional text may include codes that

affect the direction in which text is displayed. The linkified version should keep the
same display direction.

4. If TLDs are used as a “special token” to determine linkability, then all TLDs must be

included. A list of TLDs should be updated on a frequent basis.

Unicode—Background and Code Point Attributes

The Unicode standard has been evolving since it was first published as Unicode 1.0 in 1991.
Each version since has added more characters and code points to handle more languages
and scripts. The current version is 12.1.

In Unicode, every code point has a set of properties, such as Uppercase_Letter,
Decimal_Number, or Nonspacing_Mark. Many characters have a script property such as
Latin, Han (Chinese), or Arabic, while others, such as punctuation, do not.

As described below, IDNA uses code point attributes to determine which characters are
allowed in IDNs. UAX#44, Unicode Character Database, describes the database of code
point attributes.

UTF8, UTF16, and Other Encoding Methods

A Unicode code point can have a numeric value ranging from zero to 0x10FFFF. Since a
single byte can hold only values from 0 to 0xFF, some sort of multi-byte encoding is needed
to store Unicode code points.

The original version of Unicode had fewer than 64K (0xFFFF) code points, so each code
point could fit in a 16 bit integer. This led to a two-byte encoding known as UCS or UCS-2.
When Unicode expanded past 64K code points, UCS was extended into UTF-169, which
uses pairs of otherwise invalid 16-bit code points known as surrogates to represent values
greater than 64K. While this works, it has led to debugging problems since surrogates add
complexity to any code that counts the number of code points in a string, or that sorts strings
into code point order. An additional problem is that some computers such as those made by
IBM store the high byte of a 16-bit value first (“big-endian”), and some such as those made
by Intel store the low byte first (“little-endian”). As a result, UTF-16 has two storage variants:

8 Note: the actual website might be https-only and require https:// instead of http://. If this is the
case, then the hyperlink may not resolve.

9 See section 3.10 of the Unicode standard for technical details of UTF-8, UTF-16, and UTF-32, at

https://www.unicode.org/versions/Unicode12.0.0/ch03.pdf.

https://www.unicode.org/reports/tr44
https://www.unicode.org/versions/Unicode12.0.0/ch03.pdf

Introduction to Universal Acceptance - Report UASG007 // 24

UTF-16BE and UTF-16LE. There are techniques to detect and fix endian problems but they
can lead to bugs. At this point, UTF-16 is primarily used in existing applications with
Microsoft Windows APIs, and the Java and Javascript languages.

An alternative encoding is UTF-8, which encodes each code point as a variable length string
of one to four bytes. UTF-8 has several advantages over UTF-16, including that the ASCII
subset of Unicode is encoded as a single byte so any ASCII string is automatically a UTF-8
string. UTF-8 is usually more compact than its UTF-16 equivalent, and is easier to sort
because UTF-8 strings sorted in byte order are automatically in code point order. IDNA and
EAI all require UTF-8 coding.

UTF-32 is a simple format that stores each code point in a 32-bit integer. It is convenient for
internal processing in programs since the code points in an array of UTF-32 can be indexed
directly, but it is rarely used in storage because of its bulk.

IDNA – A Brief History and Current State

Internationalized Domain Names in Applications (IDNA) was first defined by the IETF in
2003 as what is now known as IDNA200310. It included an algorithm to map Unicode code
points into a standard form in domain name labels known as Nameprep, and an algorithm to
encode Unicode code point labels in ASCII known as Punycode. Nameprep includes
transformations such as mapping upper to lower case.

After some experience with IDNA, the IETF developed and published a revised spec known
as IDNA2008 in 201011. IDNA2008 created the terms U-label and A-label and removed the
Nameprep step, advising that applications should do a mapping appropriate for the locale
and application environment. IDNA2008 was updated for Unicode 6.0 by RFC 6452 in 2011
and continues to be reviewed by the IETF.

In practice, too many implementations are still using IDNA2003. A few libraries do use tables
(like the ones included in IDNA2003) created for IDNA2008. No locale mappings exist for
IDNA2008 except the standard case folding and normalization rules included in the Unicode
Standard.

One exception is that there are a few mappings from UTS#46, Unicode IDNA Compatibility
Processing. This specifies whether a few common characters that are mapped in IDNA2003
but allowed as characters in IDNA2008 should be accepted or mapped. It is important for
applications to treat these characters according to IDNA2008 and not IDNA2003, and that if
UTS#46 is in use, it is used in a way that is compatible with IDNA2008.

Use Cases for Testing

Software that is intended to handle IDNs and EAI mail addresses should be tested with a
wide range of domain names and addresses. See UASG 004, Use Cases for UA Readiness
Evaluation, for a set of test cases.

10 The definition is in RFCs 3490, 3491, and 3492.

11 The definition is in RFCs 5890, 5891, 5892, 5893, 5894, and 5895.

https://www.unicode.org/reports/tr46/#Mapping
https://www.unicode.org/reports/tr46/#Mapping
https://uasg.tech/wp-content/uploads/documents/UASG004-en-digital.pdf
https://tools.ietf.org/html/rfc3490
https://tools.ietf.org/html/rfc3491
https://www.ietf.org/rfc/rfc3492.txt
https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5893
https://tools.ietf.org/html/rfc5894
https://tools.ietf.org/html/rfc5895

Introduction to Universal Acceptance - Report UASG007 // 25

Upgrading Software for EAI

EAI conformance requires upgrades to mail servers, submission and delivery software, mail
user agents and web mail, and any application that handles email addresses and sends
mail.

For a detailed overview of EAI, its issues, and how to implement it, see UASG 012, Email
Address Internationalization (EAI): A Technical Overview.

Advanced Topics

Complex Scripts

The details of complex scripts may be of limited interest to those who are not developers
creating their own string parsing or display libraries. Nevertheless, a summary is included
here to ensure that all readers have sufficient awareness to recognize code bugs related to
these scripts when encountered in user experiences.

For formatted HTML text in web pages and email, the HTML standards have elaborate
features for handling and displaying complex and bidirectional text, which developers should
understand and use to render text. See the WHATWG HTML standard section on
rendering12, and the corresponding section of the W3C HTML standard13.

Right-to-Left Languages and Unicode Conformance

Some scripts, such as Latin and Devanagari, display characters from left to right when text is
presented in horizontal lines. Other scripts, such as Arabic or Hebrew, display characters
from right to left. The text can also be bidirectional when a right-to-left script uses digits that
are written from left to right or when it uses embedded words from English or other
languages that are written using left-to-right scripts.

Challenges and ambiguities can occur when the horizontal direction of the text is not
uniform. To solve this issue, there is an algorithm to determine the directionality for
bidirectional Unicode text.

There is a set of rules that should be applied by the application to produce the correct order
at the time of display which are described by the Unicode Bidirectional Algorithm. We
generally refer to this as the “Bidi algorithm”.

The Bidi Algorithm

The Bidi algorithm describes how software should process text that contains both left-to-right
(LTR) and right-to-left (RTL) sequences of characters. The base direction14 assigned to the

12 Available at https://html.spec.whatwg.org/multipage/rendering.html

13 Available at https://www.w3.org/TR/2018/WD-html53-20181018/rendering.html
14 In HTML the base direction is either inherited from the default direction of the document, which is
left-to-right, or explicitly set by the nearest parent element that uses the “dir” direction attribute.

https://uasg.tech/wp-content/uploads/documents/UASG012-en-digital.pdf
https://html.spec.whatwg.org/multipage/rendering.html
https://www.w3.org/TR/2018/WD-html53-20181018/rendering.html

Introduction to Universal Acceptance - Report UASG007 // 26

phrase will determine the order in which text is displayed. This can be either left-to-right or
right-to-left and defines the order in which sequences of characters are displayed. In this
document, the base direction is left to right so all sequences of characters are displayed with
the first sequence to the left of the second sequence.

To know if a sequence is left-to-right or right-to-left, each character in Unicode has an
associated directional property. Most letters are strongly typed (strong characters) as LTR
(left-to-right) or RTL (right-to-left) depending on the script of which they are a part. A
sequence of strongly typed RTL characters will be displayed from right to left. This is
independent of the surrounding base direction. For example:

(LTR) example - مثال (RTL).

Text with different directionality can be mixed in line. In such cases, the Bidi algorithm
produces a separate directional run out of each sequence of contiguous characters with the
same directionality.

Spaces and most punctuation are not strongly typed as either LTR or RTL in Unicode
because they may be used in either type of script. They are therefore classified as neutral or
weak characters. Weak characters are those which are generally used in one direction, but
in some contexts may be used in the other. Examples of this type of character include:

▪ European digits.
▪ Eastern Arabic-Indic digits.
▪ Arithmetic and currency symbols.
▪ Punctuation symbols that are common to many scripts, such as the colon, comma,

full-stop, and the no-break space.

The directionality of neutral characters is indeterminate without context. Some examples
include:

▪ Tabs.
▪ Paragraph separators.
▪ Most other whitespace characters.

When a neutral character is between two strongly typed characters that have the same
directional type, it will also assume that directionality. For example, a neutral character
between two RTL characters will be treated as an RTL character itself, and will have the
effect of extending the directional run:

 نطاق.مثال ▪

Even if there are several neutral characters between the two strongly typed characters, they
will all be treated in the same way.

When a space or punctuation falls between two strongly typed characters that have different
directionality, the neutral character(s) will be treated as if it has the same directionality as the
prevailing base direction. For example:

▪ example. مثال

Introduction to Universal Acceptance - Report UASG007 // 27

Remember that this document has left to right as its base sequence so example is the

second level domain and مثال the TLD.

Unless a directional override is present, numbers are always encoded and entered high-
order digit first, and the numerals rendered LTR. The weak directionality applies only to the
placement of the number in its entirety.

The full details of the Bidi algorithm are described in Unicode Technical Report #9.

The Bidi Rule for Domain Names

A Bidi domain name is one that contains at least one RTL label. The Bidi rule for domain
names, specified in RFC 589315, limits the code points in names so that there are no two
names that are different sequences of code points but display the same due to bidirectional
display rules.

Joiners

Some languages use alphabetic scripts in which single phonemes are written using two
characters called a digraph. In other words, a digraph is a group of two successive letters
that represent a single sound (or phoneme).

Examples of digraphs in English

ch (as in church)
ph (as in phony)

th (then)
th (think)

sh (shoe)
gh (rough)

Some digraphs are fully joined as ligatures. In writing and typography, a ligature occurs
where two or more graphemes or letters are joined as a single glyph. An example is the
ampersand character (&), which evolved from the adjoined Latin letters e and t (“et” means
“and”). In typeset English, fi and ffi often are displayed as ligatures.

If ligatures and digraphs have the same interpretation in all languages that use a given
script, Unicode normalization generally resolves the differences and makes them match.
When they have different interpretations, matching must use alternative methods (likely
chosen at the registry level) or users must be educated to understand that matching will not
occur. An example of different interpretation can be found in Section 4.3 of RFC 589416. The
Unicode Consortium lists two main strategies to determine the joining behavior of a
particular character after applying the Bidi algorithm to deal with zero width joiner characters
known as ZWJ and ZWNJ. (To learn more about these joiners see
http://www.unicode.org/L2/L2005/05307-zwj-zwnj.pdf.)

15 Right-to-Left Scripts for Internationalized Domain Names for Applications (IDNA), RFC 5893,

https://www.rfc-editor.org/info/rfc5893

16 Internationalized Domain Names for Applications (IDNA): Background, Explanation, and Rationale,

RFC 5894, https://www.rfc-editor.org/rfc/rfc5894.html#section-4.2

http://unicode.org/reports/tr9
http://www.unicode.org/L2/L2005/05307-zwj-zwnj.pdf
https://www.rfc-editor.org/info/rfc5893
https://www.rfc-editor.org/rfc/rfc5894.html#section-4.2

Introduction to Universal Acceptance - Report UASG007 // 28

▪ When shaping, an implementation can refer back to the original backing store to see
if there were adjacent ZWNJ or ZWJ characters.

▪ Alternatively, the implementation can replace ZWJ and ZWNJ by an out-of-band
character property associated with those adjacent characters, so that the information
does not interfere with the Bidi algorithm and the information is preserved across
rearrangement of those characters. Once the Bidi algorithm has been applied, that
out-of-band information can then be used for proper shaping.

Domain name registries and any other entity that allows the creation of domain names (e.g.
applications that create third- and lower-level labels) must follow the Bidi Rule for Domain
Names to ensure that names will display consistently and to prevent confusing names that
can be used for homograph attacks.

To learn more about joiners, see Section 4.3 of RFC 5894.

Homoglyphs and Similar Characters

Homoglyphs are characters that, due to similarities in size and shape, appear identical or
confusingly similar. They frequently occur when mixing Latin, Cyrillic, and Greek scripts. For
example, Latin “o” (code U+006f), Cyrillic small letter “о” (code U+043e), and Greek small
letter omicron “ο” (code U+03bf.) In some cases, there are homoglyphs in a single script,
such as the small Croatian letter “ǉ” (code U+01c9) and the two letters “lj” (code U+006c
U+006a). See the table at http://homoglyphs.net/ for more examples.

To prevent domain names with homoglyphs, registries should use Label Generation Rules
(LGRs) that limit the code points in a label to a set from a single script or compatible scripts.
Each registry should have LGRs for each script in which it accepts registrations17.

To learn more about Unicode security mechanisms for confusable detection, see:

▪ http://www.unicode.org/reports/tr39/#Confusable_Detection

To learn more about confusingly similar characters and good practice, see:

▪ M3AAWG Unicode Abuse Overview and Tutorial
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf

▪ M3AAWG Best Practices for Unicode Abuse Prevention
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-
02.pdf

Normalization, Case Folding, and String Preparation

Unicode Normalization helps to determine whether any two Unicode strings are equivalent to
each other and provides standard forms to use to process and store strings. Some
characters can be represented in Unicode by several code sequences. This is called
Unicode equivalence. Unicode provides two types of equivalences:

17 IANA has a collection of registry LGRs in its Repository of IDN Practices at

https://www.iana.org/domains/idn-tables.

https://tools.ietf.org/html/rfc5894
http://homoglyphs.net/
http://www.unicode.org/reports/tr39/#Confusable_Detection
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf
https://www.iana.org/domains/idn-tables

Introduction to Universal Acceptance - Report UASG007 // 29

▪ Canonical
▪ Compatibility

Sequences representing the same visual character are called canonically equivalent. These
sequences have the same appearance and meaning when printed or displayed. For
example:

U+006E (Latin lowercase “n”) followed by U+0303 (the
combining tilde “◌̃”)

= ñ

U+00F1 (lowercase letter “ñ” of the Spanish alphabet) = ñ

Unicode defines NFC (Normalization Form C) as Canonical Decomposition, followed by
Canonical Composition. This reduces text to a minimal number of code points while not
changing its appearance. It should be noted that in this example, three characters above are
valid to be used according to IDNA2008.

Compatibility equivalents are sequences which can appear different, but in some contexts
the same meaning. It is a weaker type of equivalence between characters or sequences of
characters. For example:

U+FB00 (the typographic ligature “ff”) = ff

U+0066 U+0066 (two Latin “f” letters) = ff

In the example above, the code point U+FB00 is defined to be compatible, but not
canonically equivalent to the sequence U+0066 U+0066. Sequences that are canonically
equivalent are also compatible, but the opposite is not always true.

It should be noted that the code point U+FB00 is not valid according to IDNA2008.
Unicode defines NFKC (Normalization Form KC) a Compatibility Decomposition, followed by
Canonical Composition. This reduces text to a standard set code points and may change its
appearance. For example, NKFC turns the ligature “ff” into the two letters “f f” and the ante

meridian symbol ㏂ (U+33C2) into the four characters “a.m.” (U+0061 U+002E U+006D

U+002E.)

To avoid interoperability problems arising from the use of canonically equivalent, yet
different, character sequences, the W3C recommends using NFC for all text.

To see a list of all characters that may change in any of the Normalization Forms, see:
http://www.unicode.org/charts/normalization.

Some other points to note:

▪ The characters in IDN labels must be in NFC form.
▪ When two applications share Unicode data, but normalize them differently, errors

and data loss can occur.
▪ The Unicode consortium asserts that Normalization Forms must remain stable over

time. In other words, a string must remain normalized under all future versions of
Unicode for backward compatibility.

http://www.unicode.org/charts/normalization
http://www.unicode.org/charts/normalization
http://www.unicode.org/charts/normalization.
http://www.unicode.org/charts/normalization.

Introduction to Universal Acceptance - Report UASG007 // 30

▪ As pointed out earlier, be conservative when looking at what code points to allow in a
domain name.

Tips for software developers

✖ Don’t attempt to normalize by converting to uppercase or ignoring non-spacing
characters, because this makes sorting, data copying import and export, and
data retrieval by client applications difficult and may result in data loss or
corruption.

✖ Never allow code points in domain names which are not allowed according to
IDNA2008.

To learn more about Unicode normalization, see:

▪ http://www.w3.org/TR/charmod-norm
▪ http://unicode.org/reports/tr15

Case Folding and Mapping

Case folding and mapping is the process of turning all of the characters in a string into the
same case, usually lower case. Mapping upper case [A-Z] to lower case [a-z] works for
ASCII-only text documents, but is far more complex in languages that use additional
characters. Case mapping can be context-dependent, with the mapped character depending
on the context in which it occurs, e.g., various forms of the Greek sigma. It can also be
locale-dependent, with the mapped character depending on the locale in which the text is
interpreted, e.g., Turkish dotted and undotted upper and lower case I. Case folding is locale-
independent, for strings that will be interpreted by software, while case mapping is locale-
dependent and is intended for text to be read by people. Finally, mapping to upper case and
mapping to lower case are not inverse functions.

For IDNs, IDNA2008 allows applications to use any appropriate case mapping because the
mapping takes place before the validation of code points. In practice, locale-specific
identifier mappings do not exist and everyone uses the mappings from Unicode’s UTS#4618.

Tips for software developers

✔ Consider the desired goal before attempting case mapping: is it a generic map
for labels, a string in a known language, or something else?

✔ Perform Unicode Normalization before case folding.

18 UTS#46, Unicode IDNA Compatibility Processing, https://www.unicode.org/reports/tr46/#Mapping

http://www.w3.org/TR/charmod-norm
http://www.w3.org/TR/charmod-norm
http://www.w3.org/TR/charmod-norm
http://unicode.org/reports/tr15
http://unicode.org/reports/tr15
http://unicode.org/reports/tr15
https://www.unicode.org/reports/tr46/#Mapping

Introduction to Universal Acceptance - Report UASG007 // 31

Glossary and Other Resources

Glossary

A-label The ASCII-compatible encoded (ACE) representation of a
label in an Internationalized Domain Name, used internally
within the DNS protocol. A-labels always begin with the ACE
prefix “xn--”. An A-label can be converted to a U-label and
back without loss of information.

ACE prefix ASCII Compatible Encoding Prefix “xn--”.

ASCII American Standard Code for Information Interchange. ASCII
includes unaccented Latin characters and the European-
Arabic digits. ASCII is a subset of Unicode: every ASCII
character is also a Unicode character.

API An Application Programming Interface (API) is a set of
routines, protocols, and tools for building software and
applications. An API may be for a web based system,
operating system, or database system, and it provides
facilities to develop applications for that system using a given
programming language.

Codespace Range that defines the lower and upper bounds for an
encoding.

Code point A code point is a numerical value in a code space. Code
points are used to distinguish a numerical value from its
encoding as a sequence of bits, and to distinguish an abstract
character from a particular graphical representation of it
(glyph).

DNS Root
Zone

The root zone is the central directory for the DNS, which is a
key component in looking things up in DNS; for example,
translating host names into IP addresses.

EAI Email Address Internationalization allows UTF-8 characters in
an email address—the domain name, the local part, or both.

Introduction to Universal Acceptance - Report UASG007 // 32

IANA Internet Assigned Numbers Authority. Its functions include:
▪ Management of the DNS Root, the .int and .arpa domains,

and an IDN practices resource.
▪ Coordination of the global pool of IP and AS numbers,

primarily providing them to Regional Internet Registries
(RIRs).

▪ Internet Protocols’ numbering systems are managed in
conjunction with standards bodies.

ICANN ICANN's mission is to help ensure a stable, secure, and unified
global Internet. To reach another person on the Internet, you
need to type an address – a name or a number – into your
computer or other device. That address must be unique so
computers know where to find each other. ICANN helps
coordinate and support these unique identifiers across the
world. ICANN was formed in 1998 as a not-for-profit public-
benefit corporation with a community of participants from all over
the world.

IDN Internationalized Domain Name. IDNs are domain names that
include UTF-8 characters beyond the twenty-six letters of the
basic Latin alphabet “a-z”, the numbers 0-9, and the hyphen
“-“.

IDNA Internationalized Domain Names in Applications.

IDN ccTLD Country code top-level domain that includes characters
beyond the twenty-six letters of the basic Latin alphabet “a-z”.

Examples:
▪ .рф (Russia)
 (Egypt) .صر ▪
 (Saudi Arabia) .السعودية ▪

IETF The Internet Engineering Task Force (IETF) is a large open
international community of network designers, operators,
vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet.
It is open to any interested individual. The IETF develops
Internet Standards, in particular, the standards related to the
Internet Protocol Suite (TCP/IP) and the protocols used for
the web like HTTP and TLS.

Language The method of human communication, either spoken or
written, consisting of the use of words in a structured and
conventional way.

Punycode An algorithm that represents UTF-8 in the limited character
subset of ASCII supported by the Domain Name System
(DNS). Punycode is used in A- labels in the Internationalized
Domain Names in Applications (IDNA) framework.

Introduction to Universal Acceptance - Report UASG007 // 33

Registrar An organization where domain names are registered by
users. The registrar keeps records of the contact information
and submits the technical information to a central directory
known as the “registry”.

Registry The authoritative, master database of all domain names
registered in each top-level domain (TLD).

RFC A Request for Comments (RFC) is a formal document from
the Internet Engineering Task Force (IETF) that is the result
of committee drafting and subsequent review by interested
parties. Some (but not all) RFCs document approved Internet
standards.

Script The collection of letters or characters used in writing,
representing the sounds of a language.

Second-level
domain name

In the Domain Name System (DNS) hierarchy, a second-level
domain (SLD or 2LD) is a domain that is directly below a top-
level domain (TLD). For example, in example.com, example
is the second-level domain of the .com TLD.

U-label A U-label is an IDNA-valid string of Unicode characters
including at least one non-ASCII character. It can be
converted to an A-label and back without loss of information.

UA-ready
software or
UA-readiness

Software that has the ability to accept, store, process,
validate, and display all top-level domains, IDNs, and email
addresses equally.

Unicode A universal character encoding standard. It defines the way
individual characters are represented in text files, web pages,
and other types of documents. Unicode was designed to
support characters from all languages around the world. It
can support roughly 1,000,000 characters.
See: http://unicode.org.

UTF Unicode Transformation Format. It is a way of representing
Unicode code points as a stream of bytes. UTF-8 is the
preferred UTF for handling IDN and EAI. UTF-8 converts
Unicode to 8-bit bytes.

M3AAWG The Messaging, Malware and Mobile Anti-Abuse Working
Group (M3AAWG) is where the industry comes together to
work against botnets, malware, spam, viruses, DoS attacks,
and other online exploitation. See: https://www.m3aawg.org/.

W3C The World Wide Web Consortium (W3C) is an international
community where member organizations, a full-time staff, and
the public work together to develop web standards like HTML.
See: https://www.w3.org/.

http://unicode.org/
http://unicode.org/
https://www.m3aawg.org/
https://www.m3aawg.org/
https://www.w3.org/Consortium/Member/List
https://www.w3.org/Consortium/Member/List
https://www.w3.org/People/
https://www.w3.org/People/
https://www.w3.org/standards/
web%20standards
https://www.w3.org/
https://www.w3.org/

Introduction to Universal Acceptance - Report UASG007 // 34

WHATWG The Web Hypertext Application Technology Working Group
(WHATWG) is a community of people interested in evolving
the web through standards and tests.

The WHATWG was founded by individuals of Apple, the
Mozilla Foundation, and Opera Software in 2004, after a W3C
workshop. See https://whatwg.org/.

ZWJ Zero-Width Joiner is non-printing character used in the
computerized typesetting of some scripts, including Arabic
and all of the Indic scripts. When placed between two
characters that would otherwise not be connected, a ZWJ
causes them to be printed in their connected form.

ZWNJ Zero-Width Non-Joiner is a non-printing character used in the
computerization of writing systems that make use of ligatures.
For some languages and scripts, many of the letters of the
alphabet naturally connect with the following letter when
written in a word, forming a ligature. In order to correctly
display certain prefixes, suffixes, and compound words,
however, the ZWNJ is used to override this natural behavior
of joining letters and prevent them from joining the following
letter (but without adding a space between the two).

For a complete ICANN glossary, go to: https://www.icann.org/icann-acronyms-and-terms/.

RFCs and Key Standards

IDN RFCs

RFC
3492

Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)

RFC 3492 describes Punycode as:

"a simple and efficient transfer encoding syntax designed for
use with Internationalized Domain Names in Applications
(IDNA)"

Punycode transforms uniquely and reversibly a Unicode string into an
ASCII string. This RFC defines a general algorithm called Bootstring.
This algorithm allows a string of basic code points to uniquely
represent any string of code points drawn from a larger set.

https://tools.ietf.org/html/rfc3492

https://whatwg.org/
https://www.icann.org/resources/pages/glossary-2014-02-03-en
https://www.icann.org/icann-acronyms-and-terms/
https://www.icann.org/resources/pages/glossary-2014-02-03-en
https://www.icann.org/resources/pages/glossary-2014-02-03-en
https://tools.ietf.org/html/rfc3492

Introduction to Universal Acceptance - Report UASG007 // 35

RFC
5890

Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework

This RFC describes the usage context and protocol for a revision of
Internationalized Domain Names for Applications (IDNA).

https://tools.ietf.org/html/rfc5890

RFC
5891

Internationalized Domain Names in Applications (IDNA) Protocol

This RFC specifies the protocol mechanism, called Internationalized
Domain Names in Applications (IDNA), for registering and looking up
IDNs in a way that does not require changes to the DNS itself.

https://tools.ietf.org/html/rfc5891

RFC
5892

The Unicode Points and Internationalized Domain Names for
Applications (IDNA)

The RFC 5892 specifies rules for deciding whether a code point,
considered in isolation or in context, is a candidate for inclusion in an
Internationalized Domain Name (IDN).

https://tools.ietf.org/html/rfc5892

RFC
5893

Right-to-left scripts for Internationalized Domain Names for
Applications (IDNA)

This RFC provides a new Bidi rule for Internationalized Domain
Names for Applications (IDNA) labels, for the use of right-to-left scripts
in Internationalized Domain Names.

https://tools.ietf.org/html/rfc5893

RFC
5894

Internationalized Domain Names for Applications (IDNA):
Background, Explanation and Rationale

This informational document provides an overview of a revised system
to deal with newer versions of Unicode and provides explanatory
material for its components.

https://tools.ietf.org/html/rfc5894

RFC
5895

Mapping Characters for Internationalized Domain Names in
Applications (IDNA) 2008

This RFC describes the actions that can be taken by an
implementation between receiving user input and passing permitted
code points to the new IDNA protocol (2008). It describes an operation
that is to be applied to user input in order to prepare that user input for
use in an “on the network” protocol. It also includes a general
implementation procedure for mapping.

https://tools.ietf.org/html/rfc5895

https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc5891
https://tools.ietf.org/html/rfc5892
https://tools.ietf.org/html/rfc5893
https://tools.ietf.org/html/rfc5894
https://tools.ietf.org/html/rfc5895

Introduction to Universal Acceptance - Report UASG007 // 36

EAI RFCs

RFC
6530

Overview and Framework for Internationalized Email

This standard introduces a series of specifications that define
mechanisms and protocol extensions needed to fully support
internationalized email addresses. This document describes how the
various elements of email internationalization fit together and the
relationships among the primary specifications associated with
message transport, header formats, and handling.

https://tools.ietf.org/html/rfc6530

RFC
6531

SMTP Extension for Internationalized Email

The document defines a Simple Mail Transfer Protocol extension so
servers can advertise the ability to accept and process
internationalized email addresses and internationalized email headers.

https://tools.ietf.org/html/rfc6531

RFC
6532

Internationalized Email Headers

This document specifies an enhancement to the Internet Message
Format and to MIME that allows use of Unicode in mail addresses and
most header field content. This document specifies an enhancement
to the Internet Message Format (RFC 5322) and to MIME that permits
the direct use of UTF-8, rather than only ASCII in header field values,
including mail addresses. A new media type, message/global, is
defined for messages that use this extended format. This specification
also lifts the MIME restriction on having non-identity content-transfer-
encodings on any subtype of the message top-level type so that
message/global parts can be safely transmitted across existing mail
infrastructure.

https://tools.ietf.org/html/rfc6532

RFC
6533

Internationalized Delivery Status and Disposition Notifications

This specification adds a new address type for international email
addresses so an original recipient address with non-ASCII characters
can be correctly preserved even after downgrading. This also provides
updated content return media types for delivery status notifications
and message disposition notifications to support use of the new
address type.

https://tools.ietf.org/html/rfc6533

https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc6532
https://tools.ietf.org/html/rfc6533

Introduction to Universal Acceptance - Report UASG007 // 37

RFC
8398

Internationalized Email Addresses in X.509 Certificates

This document defines a new name form for inclusion in the
otherName field of an X.509 Subject Alternative Name and Issuer
Alternative Name extension that allows a certificate subject to be
associated with an internationalized email address.

https://tools.ietf.org/html/rfc8398.

RFC
8399

Internationalization Updates to RFC 5290

The updates to RFC 5280 described in this document provide
alignment with the 2008 specification for Internationalized Domain
Names (IDNs) and add support for internationalized email addresses
in X.509 certificates.

https://tools.ietf.org/html/rfc8399

Key Standards

ISO 10646
(Unicode)

To provide a common technical basis for the processing of
electronic information in various languages, the International
Organization for Standardization (ISO) has developed an
international coding standard called ISO 10646. The ISO
10646 provides a unified standard for the coding of characters
in all major languages in the world, including traditional and
simplified Chinese characters. This large character set is
called the Universal Character Set (UCS). The same set of
characters is defined by the Unicode standard, which further
defines additional character properties and other application
details of great interest to implementers.

Unicode is a character coding system designed by the
Unicode Consortium to support the interchange, processing
and display of the written texts of all major languages in the
world. ISO 10646 and Unicode define several encoding forms
of their common repertoire: UTF-8, UCS-2, UTF-16, UCS-4
and UTF-32.

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_det
ail_ics.htm?csnumber=63182

GB18030
(China)

GB 18030-2000 is a Chinese government standard that
specifies an extended code page for use in the Chinese
market in addition to UTF-8. The internal processing code for
the character repertoire can and should be Unicode; however,
the standard stipulates that software providers must guarantee
a successful round-trip between GB18030 and the internal
processing code. All products currently sold or to be sold in
China must plan the code page migration to support GB18030

https://tools.ietf.org/html/rfc8398
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc8399
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63182
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63182

Introduction to Universal Acceptance - Report UASG007 // 38

without exception. GB18030 is a “mandatory standard” and the
Chinese government regulates the certification process to
reinforce GB18030 deployment.

http://icu-project.org/docs/papers/unicode-gb18030-faq.html

Online Resources

APIs Windows Application Programming Interfaces (APIs)
https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%
28v=vs.85%29.aspx

SharePoint APIs
https://msdn.microsoft.com/en-us/library/office/jj860569.aspx

Public Suffix List
https://publicsuffix.org/list/public_suffix_list.dat

ICANN Authoritative TLD list
http://data.iana.org/TLD/tlds-alpha-by-domain.txt

Android APIs
http://developer.android.com/guide/index.html

MAC IOS APIs
https://developer.apple.com/library/mac/navigation

.Net Framework
https://msdn.microsoft.com/en-
us/library/system.text.encoding(v=vs.110).aspx

Unicode
security

Unicode security considerations
http://www.unicode.org/reports/tr36

Unicode security mechanisms
http://www.unicode.org/reports/tr39

Unicode
character
groupings

Unicode code planes
https://www.unicode.org/versions/Unicode12.0.0/ch02.pdf; pp. 44-54

Overview of GB18030
http://icu-project.org/docs/papers/gb18030.html

Authoritative mapping table between BG18030-2000 and Unicode
http://source.icu-project.org/repos/icu/data/trunk/charset/data/xml/gb-
18030-2000.xml

Unicode normalization
https://unicode.org/reports/tr15/

http://icu-project.org/docs/papers/unicode-gb18030-faq.html
https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%28v=vs.85%29.aspx
https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/office/jj860569.aspx
https://msdn.microsoft.com/en-us/library/office/jj860569.aspx
https://publicsuffix.org/list/public_suffix_list.dat
https://publicsuffix.org/list/public_suffix_list.dat
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
https://developer.apple.com/library/mac/navigation
https://developer.apple.com/library/mac/navigation
https://msdn.microsoft.com/en-us/library/system.text.encoding(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.text.encoding(v=vs.110).aspx
http://www.unicode.org/reports/tr36
http://www.unicode.org/reports/tr36
http://www.unicode.org/reports/tr39
https://www.unicode.org/versions/Unicode12.0.0/ch02.pdf
http://icu-project.org/docs/papers/gb18030.html
http://source.icu-project.org/repos/icu/data/trunk/charset/data/xml/gb-18030-2000.xml
http://source.icu-project.org/repos/icu/data/trunk/charset/data/xml/gb-18030-2000.xml
https://unicode.org/reports/tr15/

Introduction to Universal Acceptance - Report UASG007 // 39

Unicode
exploits

Section 3.1, “UTF-8 Exploits” in Unicode Technical Report #36
http://unicode.org/reports/tr36/#UTF-8_Exploit

M3AAWG Best Practices for Unicode Abuse Prevention
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-
practices-2016-02.pdf

M3AAWG Unicode Abuse Overview and Tutorial
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-
02.pdf

See also:
http://www.unicode.org

Miscellaneous URIs
http://tools.ietf.org/html/rfc3986

The Domain Name System: A Non-Technical Explanation—Why Universal
Resolvability Is Important
http://www.internic.net/faqs/authoritative-dns.html

ICANN glossary
https://www.icann.org/icann-acronyms-and-terms/

Need more information?

The Universal Acceptance Steering Group (UASG) and community are available to provide
advice to software developers and implementers.

👍 Contact us to share your ideas and suggestions on the topic at info@uasg.tech.
👍 Join the Universal Acceptance discussion list at http://tinyurl.com/ua-discuss.
👍 To learn more about the effort, visit http://www.icann.org/universalacceptance.

http://unicode.org/reports/tr36/#UTF-8_Exploit
http://unicode.org/reports/tr36/#UTF-8_Exploit
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf
https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf
http://www.unicode.org/
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.internic.net/faqs/authoritative-dns.html
http://www.internic.net/faqs/authoritative-dns.html
https://www.icann.org/icann-acronyms-and-terms/
mailto:info@uasg.tech
http://tinyurl.com/ua-discuss
http://tinyurl.com/ua-discuss.
http://tinyurl.com/ua-discuss.
http://www.icann.org/universalacceptance
http://www.icann.org/universalacceptance.
http://www.icann.org/universalacceptance.

	About This Document
	 Valid email addresses are not recognized or accepted.
	 Domain names are mistakenly treated as search terms in the address bar of the browser.

	Target Audience
	Background Concepts
	Domain Names
	Country Code Top-level Domains (ccTLDs)
	Generic Top-level Domains (gTLDs)
	Domain Name Internationalization
	The Need for Universal Acceptance (UA)
	U-labels and A-labels
	Email Address Internationalization (EAI)
	 A local part (before the “@” character).
	 A domain part (after the “@” character).

	Dynamic Link Generation (Linkification)
	The Dynamic Nature of the Root Zone Registry

	Universal Acceptance in Action
	Five Criteria of Universal Acceptance
	User Scenarios
	Nonconformance to Universal Practices
	Technical Requirements for UA Readiness
	High-Level Requirements

	Developer Considerations
	Designing Software for Compatibility and Flexibility
	Good Practices for Developing and Updating Software to Achieve UA-Readiness
	Authoritative Sources for Domain Names: DNS Root Zone and IANA Lists
	 https://www.internic.net/domain/root.zone (root zone file)
	 https://data.iana.org/TLD/tlds-alpha-by-domain.txt (text TLD file)

	Email with IDNs and Why It Is Not the Same as EAI
	Linkification and Its Challenges
	Good Practice Recommendations

	Unicode—Background and Code Point Attributes
	UTF8, UTF16, and Other Encoding Methods
	IDNA – A Brief History and Current State
	Use Cases for Testing
	Upgrading Software for EAI

	Advanced Topics
	Complex Scripts
	Right-to-Left Languages and Unicode Conformance
	The Bidi Algorithm
	 European digits.
	 Eastern Arabic-Indic digits.
	 Arithmetic and currency symbols.
	 Punctuation symbols that are common to many scripts, such as the colon, comma, full-stop, and the no-break space.
	 Tabs.
	 Paragraph separators.
	 Most other whitespace characters.
	 مثال.نطاق
	 example. مثال

	The Bidi Rule for Domain Names
	Joiners
	 When shaping, an implementation can refer back to the original backing store to see if there were adjacent ZWNJ or ZWJ characters.
	 Alternatively, the implementation can replace ZWJ and ZWNJ by an out-of-band character property associated with those adjacent characters, so that the information does not interfere with the Bidi algorithm and the information is preserved across rea...

	Homoglyphs and Similar Characters
	 http://www.unicode.org/reports/tr39/#Confusable_Detection
	 M3AAWG Unicode Abuse Overview and Tutorial https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf
	 M3AAWG Best Practices for Unicode Abuse Prevention https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf

	Normalization, Case Folding, and String Preparation
	 Canonical
	 Compatibility
	 The characters in IDN labels must be in NFC form.
	 When two applications share Unicode data, but normalize them differently, errors and data loss can occur.
	 The Unicode consortium asserts that Normalization Forms must remain stable over time. In other words, a string must remain normalized under all future versions of Unicode for backward compatibility.
	 As pointed out earlier, be conservative when looking at what code points to allow in a domain name.
	 http://www.w3.org/TR/charmod-norm
	 http://unicode.org/reports/tr15

	Case Folding and Mapping

	Glossary and Other Resources
	Glossary
	RFCs and Key Standards
	Key Standards
	Online Resources

