

UASG017: Evaluation of Websites for Acceptance

of a Variety of Email Addresses

Evaluation of

Websites for

Acceptance of a

Variety of Email

Addresses

25 September 2017

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 2

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 3

TABLE OF CONTENTS

Introduction

The Evaluation

Results

Analysis

Conclusion

Appendix A

 Introduction

Universal Acceptance is the concept that all domain names and all email addresses work in all

applications. But, isn’t this the case already? We conduct a survey of hundreds of popular websites and

found that no, not all domain names nor all email addresses work in all applications.

Universal Acceptance (UA) is required for a truly multilingual Internet, one in which people around the

world can navigate entirely in local languages. It is also the key to unlocking the potential of new generic

top-level domains (gTLDs) to foster competition, consumer choice and innovation in the domain name

industry. This provides consumers with a wider choice of identities to choose from when choosing their

own domain names. When an online system, such as a website or online form, is UA-ready, it means that

it can accept ALL email addresses.

The Universal Acceptance Steering Group (UASG) is a community initiative supported by ICANN and

dedicated to advancing awareness and adoption of UA worldwide.

The UASG conducted this study of more than 1000 websites to determine if they would accept a variety of

email addresses based on new top-level domains (TLDs), including long TLDs and TLDs in non-English

characters. The study also evaluated non-English mailbox names.

The results show that there is much work to be done before the world’s websites are UA-ready. Longer

top-level domains don’t do as well as short ones, introducing non-English characters in the domain name

markedly reduces the acceptance rate, and introducing non-English characters into the mailbox name

further reduces the acceptance rate.

In addition, a supplementary study was carried out to provide some insight into the software that drove

the range of behaviours observed. This small study examined only a handful of the 1000 sites from the

main study, concentrating on those that failed most or all tests, or those that passed all the tests. The

results of this supplementary study are provided in Appendix A. They do not constitute official UASG

recommendations at this point but are considerations for future work in this area.

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 4

 The Evaluation

Building on work started by domain name registry business Donuts, the UASG has, through ICANN’s

Global Support Center team, evaluated more than 1000 websites (based on Alexa ranking) to see if they

allow registration with a variety of email structures:

ascii@ascii.newshort

info1@ua-test.link

ascii@ascii.newlong

info2@ua-test.technology

ascii@idn.ascii

info3@普遍接受-测试.top

ascii@ascii.idn

info4@ua-test.世界

Unicode@ascii.ascii

测试1@ua-test.link

Unicode@idn.idn

测试5@普遍接受-测试.世界

Arabic.arabic@arabic

دون@رسيل.السعودية

For each website tested, a page that allowed registration of an email address was found and attempts

were made to register each of the evaluation cases.

 Results

1262 websites were considered for evaluation. Out of these, 749 websites included email fields that could

be tested. Seven different email addresses were tested on each website.

Fifty-four (7 percent) websites accepted all seven types of email. Forty-seven websites (6 percent) rejected

all seven types of email addresses. The rest accepted some, but not all, of our test cases.

EMAILS TESTED

Rate of Acceptance
 (out of 749 websites)

ascii@ascii.newshort info1@ua-test.link 685 91%

ascii@ascii.newlong info2@ua-test.technology 585 78%

ascii@idn.ascii

info3@普遍接受-测试.top 335 45%

ascii@ascii.idn
info4@ua-test.世界 221 30%

Unicode@ascii.ascii

测试1@ua-test.link 108 14%

Unicode@idn.idn

测试5@普遍接受-测试.世界 61 8%

Arabic.arabic@arabic 8 57 دون@رسيل.السعودية%

mailto:ascii@ascii.newshort
mailto:info1@ua-test.link
mailto:ascii@ascii.newlong
mailto:info2@ua-test.technology
mailto:ascii@idn.ascii
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:ascii@ascii.idn
mailto:Unicode@ascii.ascii
mailto:%E6%B5%8B%E8%AF%951@ua-test.link
mailto:Unicode@idn.idn
mailto:%E6%B5%8B%E8%AF%955@%E6%99%AE%E9%81%8D%E6%8E%A5%E5%8F%97-%E6%B5%8B%E8%AF%95.%E4%B8%96%E7%95%8C
mailto:Arabic.arabic@arabic
mailto:%D8%AF%D9%88%D9%86@%D8%B1%D8%B3%D9%8A%D9%84.%D8%A7%D9%84%D8%B3%D8%B9%D9%88%D8%AF%D9%8A%D8%A9
mailto:ascii@ascii.newshort
mailto:info1@ua-test.link
mailto:ascii@ascii.newlong
mailto:info2@ua-test.technology
mailto:ascii@idn.ascii
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:info3@xn----f38am99bqvcd5liy1cxsg.top
mailto:ascii@ascii.idn
mailto:Unicode@ascii.ascii
mailto:%E6%B5%8B%E8%AF%951@ua-test.link
mailto:Unicode@idn.idn
mailto:%E6%B5%8B%E8%AF%955@%E6%99%AE%E9%81%8D%E6%8E%A5%E5%8F%97-%E6%B5%8B%E8%AF%95.%E4%B8%96%E7%95%8C
mailto:Arabic.arabic@arabic
mailto:%D8%AF%D9%88%D9%86@%D8%B1%D8%B3%D9%8A%D9%84.%D8%A7%D9%84%D8%B3%D8%B9%D9%88%D8%AF%D9%8A%D8%A9

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 5

 Analysis

Clearly an ascii@ascii.ascii had the highest acceptance rate and Arabic.arabic@arabic (as well as

Unicode@idn.idn) the lowest.

When we looked at the source code we expected to find common approaches and common code.

However, we found that this was not the case when we delved deeper into the code. Very few called

server-side libraries for validation. Most used a Regular Expression (RegEx) to provide first line validation.

But we did not find a consistent RegEx deployed. Instead, it appears as if developers would fetch a RegEx

from GitHub, Stack Overflow or some other source code repository, and then apply their own

customisation.

 Conclusion

There is much work to be done to get many of the world’s websites UA and EAI-ready. Where we thought

we could address just a few applications and code repositories, that does not appear to be the case.

mailto:ascii@ascii.ascii
mailto:Arabic.arabic@arabic
mailto:Unicode@idn.idn)

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 6

Instead, we will supplement library evaluation and mitigation work with greater awareness-raising efforts

among the developer community.

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 7

 Appendix A

Why do some websites reject

internationalized email addresses that

others accept?

TABLE OF CONTENT

Introduction

Results

Sample validation failures

Rejection of all email addresses

Accepting all email addresses

Analysis of client validation

Key findings

Implementation details

Global vs local sites

Mitigation actions for client validation

Discussion

Partial mitigation

Full mitigation

Caveat

 Introduction

Taking the results of the Evaluation of Websites for Acceptance of a Variety of Email Addresses study, we

attempted to take a further look at why some websites reject addresses, and why some websites accept

addresses others reject. The raw data is available here.1

1 https://docs.google.com/spreadsheets/d/1T7sbUUBqDTsNWeUrkwXZLcpjlxt8qi-Ty6eH6DrOVdg/edit

https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.stwygi1rzlie
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.xbmbr6uoitnu
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.pp1yh59oyj58
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.khqd5ckft517
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.7xth28vcqmrc
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.hqw5thfe4mxr
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.cu2b6pge64g9
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.q40se4wqcvmt
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.xo6mqkjszp3d
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.abxd5r7gr0ln
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.3i80zll4b6vs
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.ilaq9hh4x5i4
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.kambn81zouot
https://docs.google.com/document/d/1UuT4IFWl3HezpccvU7ymY-OQkqXhenXm0xji022Epa8/edit#heading=h.aocz8zozb9xf
https://docs.google.com/spreadsheets/d/1T7sbUUBqDTsNWeUrkwXZLcpjlxt8qi-Ty6eH6DrOVdg/

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 8

We looked at three categories of websites:

• A random subset of sites that rejected some email address to see if there was any commonality in the

underlying algorithm

• The set of websites that rejected all email addresses to understand the underlying cause

• The set of websites that accepted all email addresses to understand if they performed any validation

at all

The following sections present the results for each category. Following those, we present an analysis of

the results and suggest some mitigation actions.

 Results

Sample validation failures

Here we inspected a random subset of sites to see if we could determine the algorithm responsible for

rejecting the addresses. In most cases, we could not - either because the validation was performed on the

server, or (in a few cases) simply because the location of validation was obscure and could not be found in

a timely fashion. Table 1 below presents a sample of 10 cases where the algorithm could be identified i.e.,

where some validation was performed in the client which failed.

Table 1 - Sample validation failures

Website Failing

Email

Processing: example code and means of validation

twitter.com

info4@
ua-

test.世

界

email:/^[\w-]+([^@,\s<>()]*[\w-]+)?@[\w-]+(\.[\w-]+)*\.[a-z]{2,}$/i

Regular expression check in Javascript.

ibm.com

info4@
ua-

test.世

界

emailFormat: /^(([^\.@"]+(\.[^<>()\[\]\\.*,;:\s@=/&"]+)*)|(".+"))@((\[[0-

9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}])|(([a-zA-Z\-0-9]+\.)+[a-zA-

Z]{2,}))$/, email: /^[_A-Za-z0-9-!#$%'?^~`\{\}\|\+]+(\.[_A-Za-z0-9-

!#$%'?^~`\{\}\|\+]+)*@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-

9]{1,3}]com)|(([a-zA-Z\-0-9]+\.)+[a-zA-Z]{2,}))$/,

An email address must pass both of these Javascript regular expressions.

The first supposedly checks for a valid email format, the second for

invalid chars in the address.

meetup.com

info4@
ua-

test.世

界

isEmail:function(){return this.value.match(/^([a-zA-Z0-9_.-])+@(([a-zA-

Z0-9-])+\.)+([a-zA-Z0-9]{2,4})+$/)?!1:{key:"isEmail",

message:a("register.mobile.emailErrBadEm","Doesn't look like an email

address")}}, isNotEmail:function(){return this.value.match(/^([a-zA-Z0-

9_.-])+@(([a-zA-Z0-9-])+\.)+([a-zA-Z0-

9]{2,4})+$/)?{key:"isNotEmail",message:a("validation.error.emailNotAllow

https://twitter.com/signup
https://www.ibm.com/account/us-en/signup/register.html
https://secure.meetup.com/register/?method=email

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 9

ed","Can't be an email address")}:!1}, hasBrackets:function(){return

this.value.match(/.*?(?:<|>).*/)?{key:"hasBrackets",message:a("validation.e

rror.noBracketsAllowed","Should not have a < or a >")}:!1}

Regular expression checks in Javascript.

indiatimes.co

m

info4@
ua-

test.世

界

var reg = /^([A-Za-z0-9_\-\.])+\@([A-Za-z0-9_\-\.])+\.([A-Za-z]{2,5})$/;

Regular expression check in Javascript.

in.bookmysho

w.com

info4@
ua-

test.世

界

<input type="text" pattern="[a-z0-9._%+-]+@[a-z0-9.-]+\.[a-z]{2,4}$"

class="email-input _error" placeholder="Enter your Email ID"

id="iUserName" required="" minlength="1">

HTML5 input field with regular expression.

choicehotels.c

om

info4@
ua-

test.世

界

<input type="email" aria-describedby="membershipEmailError"

class="form-control ng-invalid ng-valid-minlength ng-dirty ng-touched

ng-valid-email ng-valid-maxlength ng-not-empty ng-valid-required ng-

invalid-pattern" id="membershipEmail" name="email" ch-focus-

if="missingPartnerHubField === 'email'" ng-class="{'rentals-input text-

left text-mondo text-bold':

$root.featureFlags.VACATION_RENTALS_NEW_INPUTS}" ng-

focus="clearGuestInfoError('email', guestInfoForm.email)" ng-

maxlength="60" ng-minlength="5" ng-model="guestInfo.email" ng-

pattern="/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-

z]{2,4})$/i" ng-required="true" required="required" aria-invalid="true">

Regular expression validation on a HTML input field using Angular JS.

fodors.com

info4@
ua-

test.世

界

var emailregex = /\b[a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,6}\b/;

Regular expression check in Javascript. Checking the Javascript, we

found another 2 email validation routines in the Javascript files loaded

by the page, each with a different regular expression and/or other

processing.

ft.com

info3@

普遍接

受-测

试.top

function(e){return/^(([^<>()[\]\\.,;:\s@"]+(\.[^<>()[\]\\.,;:\s@"]+)*)|(".+"))

@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}])|(([a-zA-Z\-0-9]+\.)+[a-

zA-Z]{2,}))$/.test(e)}

Regular expression check in Javascript.

sears.com

info4@
ua-

test.世

界

reEmail = /^([\w-]+(?:\.[\w-]+)*)@((?:[\w-]+\.)*\w[\w-]{0,66})\.([a-

z]{2,6}(?:\.[a-z]{2})?)$/i,

reEmailUser = /^(root@|abuse@|spam@)/i,

Regular expression checks in Javascript.

https://jsso.indiatimes.com/sso/identity/login?channel=indiatimes
https://jsso.indiatimes.com/sso/identity/login?channel=indiatimes
https://in.bookmyshow.com/
https://in.bookmyshow.com/
https://www.choicehotels.com/choice-privileges/account/enroll?createType=joinToday
https://www.choicehotels.com/choice-privileges/account/enroll?createType=joinToday
http://www.fodors.com/login/register.html
https://www.ft.com/signup?offerId=1dbc248e-b98d-b703-bc25-a05cc5670804
https://www.sears.com/universalprofile/userLogonForm?upid=3&formName=REG&URL=http%3A%2F%2Fwww.sears.com%2Fcontent%2Fshc%2Fsears%2Fen_gb.html

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 10

telegraph.co.u

k

info4@
ua-

test.世

界

email:/^[a-zA-Z0-9.!#$%&’*+=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-

9-]+)*$/i

Regular expression check in Javascript.

Rejection of all email addresses

Next we looked specifically at websites that rejected all forms of email addresses used in the tests. There

are not many of these (roughly 7 percent of the test samples) and usually the rejection was not, as far as

we could determine, performed in the client. We found three sites which rejected all tested email

addresses in the client; these are detailed in Table 2.

Table 2 - Sites which reject all addresses

Website Processing: example code and means of processing

oomall.co

m

result=str.match(/^\w+((-\w+)|(\.\w+))*\@[A-Za-z0-9]+((\.|-)((com)|(net)|(cn))+)$/)

Regular expression check in Javascript.

This rejects all email addresses with non-ASCII domains, and further rejects any TLD

that is not .com, .net or .cn.

cdc.gov <input autocomplete="on" class="form-control input-xxlarge input-validation-error"

data-val="true" data-val-maxlength="Email address must be under 256 characters."

data-val-maxlength-max="255" data-val-regex="Email does not appear to be a valid

format." data-val-regex-pattern="^[\w-\.]{1,}\@([\da-zA-Z-]{1,}\.){1,}[\da-zA-Z-]{2,3}$"

data-val-required="Please enter your email address." id="Email" maxlength="255"

name="Email" placeholder="Enter your e-mail address" title="Please enter your e-mail

address (required)" type="text" value="">

HTML5 input field with regular expression. This rejects non-ASCII domains, and further

rejects any TLD that is not 2 or 3 characters long.

ajc.com /^[-a-z0-9~!$%^&*_=+}{\'?]+(\.[-a-z0-9~!$%^&*_=+}{\'?]+)*@([a-z0-9_][-a-z0-9_]*(\.[-

a-z0-

9_]+)*\.(aero|arpa|biz|com|coop|edu|gov|info|int|mil|museum|name|net|org|pro|travel|m

obi|[a-z][a-z])|([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))(:[0-9]{1,5})?$/i

Regular expression check in Javascript. This rejects all non-ASCII addresses, and further

rejects any TLD that is more than 2 characters long and which is not in a hardcoded list

of TLDs. It also appears that someone has attempted to support IPv4 domain literals,

though without the required enclosing [] and allowing a trailing colon and a HTTP-like

port number which is not permitted by RFC5321.

https://secure.telegraph.co.uk/secure/registration/?WT.mc_id=tmg_headernav&redirectTo=http%253A%252F%252Fwww.telegraph.co.uk%252F
https://secure.telegraph.co.uk/secure/registration/?WT.mc_id=tmg_headernav&redirectTo=http%253A%252F%252Fwww.telegraph.co.uk%252F
http://oomall.com/user/register
http://oomall.com/user/register
https://wwwn.cdc.gov/dcs
https://subscribe.ajc.com/subscriptionpanel

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 11

Accepting all email addresses

Finally, we looked specifically at websites that accepted all forms of email address used in the tests. Again,

there are not many of these (as with sites that rejected all forms of addresses, roughly 7 percent of the

test samples), and again there was usually no client validation performed as far as we could determine.

Table 3 presents 3 sites that perform client validation and accepted all test addresses.

Table 3 - Sites which accept all addresses

Website Processing: example code and means of processing

beenverified.com /^((([a-z]|\d|[!#\$%&'*\+\-\/=\?\^_`{\|}~]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-

\uFFEF])+(\.([a-z]|\d|[!#\$%&'*\+\-\/=\?\^_`{\|}~]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF])+)*)|((\x22)((((\x20|\x09)*(\x0d\x0a))?(\x20|\x09)+)?(([\x01-

\x08\x0b\x0c\x0e-\x1f\x7f]|\x21|[\x23-\x5b]|[\x5d-\x7e]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF])|(\\([\x01-\x09\x0b\x0c\x0d-\x7f]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF]))))*(((\x20|\x09)*(\x0d\x0a))?(\x20|\x09)+)?(\x22)))@((([a-

z]|\d|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])|(([a-z]|\d|[\u00A0-

\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])([a-z]|\d|-|\.|_|~|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF])*([a-z]|\d|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-

\uFFEF])))\.)+(([a-z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])|(([a-

z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])([a-z]|\d|-|\.|_|~|[\u00A0-

\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])*([a-z]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF])))$/i

Regular expression check in Javascript. This appears to accept allowed Unicode

characters, though from the base multilingual plane only.

This website uses the JQuery validation plugin. This is not an official part of

JQuery, but is written by a core JQuery developer. However, the plugins regular

expression, which in the original source rejects all non-ASCII addresses, has been

replaced by this site with the more flexible regular expression above.

Foxnews.com

Account sign in

form.

/^.+@(?:[^.]+\.)+(?:[^.]{2,})$

Regular expression check in Javascript. This accepts any Unicode characters, only

insisting that the domain must have more than one label and the TLD is 2

characters or longer.

intuit.com /^((([a-z]|\d|[!#\$%&'*\+\-\/=\?\^_`{\|}~]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-

\uFFEF])+(\.([a-z]|\d|[!#\$%&'*\+\-\/=\?\^_`{\|}~]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF])+)*)|((\x22)((((\x20|\x09)*(\x0d\x0a))?(\x20|\x09)+)?(([\x01-

\x08\x0b\x0c\x0e-\x1f\x7f]|\x21|[\x23-\x5b]|[\x5d-\x7e]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF])|(\\([\x01-\x09\x0b\x0c\x0d-\x7f]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF]))))*(((\x20|\x09)*(\x0d\x0a))?(\x20|\x09)+)?(\x22)))@((([a-

z]|\d|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])|(([a-z]|\d|[\u00A0-

\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])([a-z]|\d|-|\.|_|~|[\u00A0-\uD7FF\uF900-

https://www.beenverified.com/lp/32fc4f/4/subscribe#.http://oomall.com/user/register
https://jqueryvalidation.org/
http://www.foxnews.com/
https://mint.intuit.com/login.event?task=S

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 12

\uFDCF\uFDF0-\uFFEF])*([a-z]|\d|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-

\uFFEF])))\.)+(([a-z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])|(([a-

z]|[\u00A0-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])([a-z]|\d|-|\.|_|~|[\u00A0-

\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF])*([a-z]|[\u00A0-\uD7FF\uF900-

\uFDCF\uFDF0-\uFFEF]))){2,}/i

Regular expression check in Javascript. This appears to accept allowed Unicode

characters, though from the base multilingual plane only, and further insists the

TLD must be at least 2 characters long.

 Analysis of client validation

Key findings

In all cases the client validation of the email address was done using a regular expression

embedded in the client code. The regular expressions typically had the following characteristics:

 In all cases (except those that accepted all test addresses), the regular expression prohibited the use

of non-ASCII domain names in email addresses.

 Several regular expressions prohibited TLDs longer than three, four (or, in one case, six) characters.

 Two regular expressions prohibited TLDs not on a hardcoded list (one of these two did allow any two

ASCII character TLD).

 In all but two cases (other than those that accepted all test addresses), non-ASCII mailbox identifiers

were also prohibited.

Sites that accepted all the test email addresses generally performed only minimal validation via a regular

expression (with two of the three specifically accepting Unicode characters from the base multilingual

plane), with further validation presumably being done server-side.

Sites that rejected all the test email addresses generally did so because of a combination of a restriction

on non-ASCII characters and a restriction on the accepted TLD.

Although the regular expressions used show a certain number of common features, they are all unique. Also,

there was absolutely no commonality in the way in which each site used JavaScript to validate email.

None of the sites inspected directly used a library to perform client-side validation.

Implementation details

 In two cases, the HTML5 facility for adding a regular expression pattern to an input field was used. In

all other cases, JavaScript was used directly for the validation.

 Three attempt to explicitly match an IPv4 literal address domain (i.e. username@[192.168.0.1])

although one site (ajc.com[ajc.com]) does this incorrectly by not allowing for the enclosing []. None of

the sites examined attempt to match IPv6 literals.”

 Mitigation actions for client validation

https://urldefense.proofpoint.com/v2/url?u=http-3A__ajc.com&d=DwMFaQ&c=FmY1u3PJp6wrcrwll3mSVzgfkbPSS6sJms7xcl4I5cM&r=YI0XKyKCabKQi3GVWLvuoyCWjH9WBgEBxLbMnmhSRwo&m=ECOpo0Ji-INu-7fP6VjKZ8qaVmu0rP7g4K-zVUnE1No&s=RvHY1G8OwZS11UCS9M8aEyycZUu8kzmXuev9jDEmuK4&e=

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 13

Discussion

From the above (limited) data, it appears that any modifications to enable full UA will have to be per-site;

there is no evidence in this sample of any use of common client-side libraries that might be fixed to leverage

UA acceptance.

Reviewing recent developer forums and blog posts, many developers, when tasked with 'validate this

email' will ask on a forum, have another user give them a regular expression saying, 'I use this' and plug

that regular expression (or some small variant) in and mark the job done. Comments from an advanced

developer pointing out that the regular expression will reject valid email addresses do not seem to create

much attention.

The code examined in this study and the reviews of developer forums yielded no regular expression that

is recognised to fully validate UA email addresses.

Partial mitigation

We note that in all the sites checked, the client-side validation is employed as a basic input check. The

address is invariably submitted for server-side processing, for example, ensuring that no account with that

email address has been registered at the site. Any server-side software should be validating all data that is

passed from the client.

The UASG suggests that validation be kept to a minimum, focusing just on syntactical validation. Mailbox

names (local part) can consist of any characters and domain names as well. Indeed, the domain name

could be on either side of the ‘@’ depending on whether a right-to-left or left-to-right script is used.

Full mitigation

Searching the NPM JavaScript package repository for email validation shows isemail to be the most

popular package for email address validation by a significant margin. From release 3.0.0 of 22nd June

2017, this claims support for all domain names and email addresses.

Encouraging its adoption would seem, therefore, to be a promising recommendation to move towards full

mitigation for client-side email address validation (note, however, that no formal evaluation of the library

has been performed).

Unfortunately, it may well be the case that organizations will be reluctant to deploy more sophisticated

client-side checking, as this will increase the amount of Javascript that must be downloaded before a page

is ready for input. In this case, partial mitigation may be the only option.

 Caveat

Both partial and full mitigation proposals above deal only with client-side validation. As noted, it is to be

expected that further server-side validation is also being performed. Judging by the results of Evaluation

of Websites for Acceptance of a Variety of Email Addresses, it is probable that further mitigation work will

be required to ensure that valid UA addresses are not rejected by this server-side validation.

https://www.npmjs.com/
https://www.npmjs.com/package/isemail

UASG017: Evaluation of Websites for Acceptance of a Variety of Email Addresses // 14

	 Introduction
	 The Evaluation
	 Results
	 Analysis
	 Conclusion
	 Appendix A
	 Introduction
	 Results
	Sample validation failures
	Table 1 - Sample validation failures

	Rejection of all email addresses
	Table 2 - Sites which reject all addresses

	Accepting all email addresses

	 Analysis of client validation
	Key findings
	 In all cases (except those that accepted all test addresses), the regular expression prohibited the use of non-ASCII domain names in email addresses.
	 Several regular expressions prohibited TLDs longer than three, four (or, in one case, six) characters.
	 Two regular expressions prohibited TLDs not on a hardcoded list (one of these two did allow any two ASCII character TLD).
	 In all but two cases (other than those that accepted all test addresses), non-ASCII mailbox identifiers were also prohibited.

	Implementation details
	 In two cases, the HTML5 facility for adding a regular expression pattern to an input field was used. In all other cases, JavaScript was used directly for the validation.
	 Three attempt to explicitly match an IPv4 literal address domain (i.e. username@[192.168.0.1]) although one site (ajc.com[ajc.com]) does this incorrectly by not allowing for the enclosing []. None of the sites examined attempt to match IPv6 literals.”

	 Mitigation actions for client validation
	Discussion
	Partial mitigation
	Full mitigation

	 Caveat

