

UASG018 v1.1 May 2019

1 May 2019

Reviewing Programming
Languages and
Frameworks for
Compliance with
Universal Acceptance
Good Practice

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 2

Table of contents

Universal Acceptance 1

About this document 4

Target audience 4

Background 5

Terminology 5

References 5

Candidate list of libraries 6

Basis of library evaluation 6
Test suite 6
Assumptions 7

4. Technical evaluation 8
4.1. Test suite 8

4.1.1 Low-level functions 9
4.1.1.1 L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup form 9

4.1.1.2 L-A2U: IDNA2008 - Convert ASCII domain name to Unicode 10
4.1.2 High-level functions 10

4.1.2.1 H-DNS: Domain name - syntactic check 11
4.1.2.2 H-ES: Email- syntactic check 11

4.1.2.3 H-ID: Identifier - Identifier lookup 12

Appendix A - Code examples 13
1. L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup form 13

GNU Libidn2 (C) 13

2. L-A2U: IDNA2008 - Convert ASCII domain name to Unicode 14
npm idna-uts46 (Javascript) 14

Appendix B - References 15

UASG Documents 15
IDNA RFCs 15
IANA Registries 15
Unicode 15

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 3

PRECIS RFC 15
Special-use domain name RFCs 15
Internationalized email RFCs 15

Obsolete IDNA RFCs 15

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 4

 Universal Acceptance

Universal Acceptance is a foundational requirement for a truly multilingual Internet, one in
which users around the world can navigate entirely in local languages. It is also the key to
unlocking the potential of new generic top-level domains (gTLDs) to foster competition,
consumer choice and innovation in the domain name industry. To achieve Universal
Acceptance, Internet applications and systems must treat all TLDs in a consistent manner,
including new gTLDs and internationalized TLDs. Specifically, they must accept, validate,
store, process and display all domain names.

The Universal Acceptance Steering Group (UASG) is a community-based team working to
share this vision for the Internet of the future with those who construct this space: coders.
The group's primary objective is to help software developers and website owners
understand how to update their systems to keep pace with an evolving domain name
system (DNS).

 About this document

This document was created to provide a framework for the evaluation of popular
programming packages and libraries and their usefulness in aiding Universal Acceptance
good practice. It is a response to the description of work issued by UASG, available at
https://uasg.tech/wp-content/uploads/2016/05/Help-Wanted-Open-Source-Software-Review-
v201602111.pdf.

Where those packages or libraries do not provide the expected support, the follow-up
project would create recommendations/patches to be submitted to add UA support and
guidance for application developers on correct and effective use of the packages or libraries.

This document and the evaluation process it describes are expected to evolve together as
experience is gained with evaluations.

Technical details required by those performing library evaluations are presented in a
separate document. This separation of documents is purely due to technical restrictions in
the document platform1.

 Target audience

The main part of this document serves as an overview of the evaluation framework
presented in a form appropriate for all stakeholders.

1 The tables in the technical presentation are wide, and best presented in landscape form. Google Docs cannot at
present mix portrait and landscape pages in a single document.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 5

Those performing the library evaluations require the technical details of the tests and the
test data sets presented in a separate document and accompanying documents. The test
descriptions in this main document describe the categories of tests, omitting technical detail,
and are accompanied by illustrative individual tests using data drawn from UASG004 - Use
Cases for UA Readiness Evaluation.

 Background

Software applications that make use of Internet services are built and used in a variety of
ways. They exist at all points along a continuum ranging from embedded firmware in a
connected device, through desktop/mobile/tablet applications, through to software that runs
purely in a web browser environment, the latter often communicating with more software
running on remote servers.

All these types make use of Internet identifiers which, while historically represented only in
characters employed by US English (i.e. A-Z, 0-9 and ‘-’), can now, via the IDNA Protocol, be
fully multilingual. These identifiers are:

Domain names, e.g. example.com or 普遍接受-测试.世界

Email addresses, e.g. joe.bloggs@example.com or 测试3@普遍接受-测试.top

It is therefore important for all stakeholders in development of a software application to be
aware what libraries are available for their chosen development environment to be used for
processing Internet identifiers, and to have a clear basis for assessing those libraries, for
technical and business suitability, with regard to the UA correctness and compliance.

 Terminology

Libraries: All but the most unusual Internet applications today rely heavily on software
components to perform much of their function. These components are variously termed
packages, frameworks or libraries (which may or may not include various bindings); for
brevity, they will all be referred to as libraries henceforth.

Functions: Similarly, the services offered by these libraries may be variously classed as
methods, functions, APIs etc. but will be referred to simply as functions henceforth.

Identifier: Any of the Internet identifiers: domain names, email address.

 References

A full list of references is given in Appendix B.

The illustrative test data presented in the main document is drawn from
UASG004 - Use Cases for UA Readiness Evaluation. Other references list the relevant
standards and related information in the following categories:

 IDNA RFCs

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 6

 Unicode
 IANA Registries
 Special-use domain name RFCs
 Internationalized email RFCs
 Obsolete IDNA RFCs

 Candidate list of libraries

This section lists a currently popular set of libraries that are good candidates for an initial set
of evaluations.

 GNU Libidn. Implementation of IDNA2003 in C. Bindings available for Perl
and Ruby.

 GNU Libidn2. Implementation of IDNA2008 in C by the author of GNU Libidn.
 International Components for Unicode. Versions are available for Java and

for C with C and C++ bindings.
 Python encodings.idna. Part of the Python standard library. Test in Python

and Python3.
 Python idna module. A replacement for the Python standard library

encodings.idna module that supports IDNA2008. Test in Python and Python3.
 PHP IDN functions. Part of the PHP standard library, supporting IDNA2003

and IDNA2008.
 Go idna package. Part of the Go standard library supporting IDNA2008.
 Javascript idna-uts46 npm module. Supports IDNA2003 and IDNA2008.

Bundled with Node.js.

The evaluation process will initially consider only Open Source libraries.

 Basis of library evaluation

The primary technical evaluation of all functions must be done by implementing and running
a test suite consisting of distinct test cases. This evaluation is augmented with additional
(rather more subjective) evaluations of other aspects of the library itself, which are
evaluation criteria

 Test suite

This document outlines the test cases to be used in the test suite.
The scope of this document is to specify tests that provide specific evaluation criteria as a
starting point for an evaluation of the overall library quality for typical use cases2. A test suite

2 By typical, we mean use cases relating to widely used writing systems. We do not, for example, consider ensuring
that domain names in Ancient Egyptian hieroglyphics are correctly handled to be an immediate priority at this
moment.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 7

providing comprehensive test coverage for all functions is large task3, and is outside the
scope of the current statement of work.

As noted, many libraries are available with bindings enabling them to be used by languages
other than their implementing language. In this case, the test suite must be based on using
the binding language.

It is strongly recommended that test suites generated as a result of these evaluations should
be published under an Open Source license, to aid the growth over time of a comprehensive
test resource.

To aid in evaluation, we classify library functions into two groups:

 Low level functions: those that provide basic lower-level services, typically
transformations defined in the IDNA RFCs.

 High level functions: those directed at higher-level application tasks such as
syntactic and semantic checks. These will typically include calls to lower-level
functions to perform their tasks.

This classification allows the assessor and potential library user to judge whether
functionality provided by a particular library is likely to be sufficient in and of itself, or
whether further application code or other libraries will be necessary. It is highly preferable
that higher level functions are implemented by libraries to avoid multiple application
developers having to separately reproduce this functionality which would likely result in
errors and inconsistencies.

 Assumptions

We also make some basic assumptions about the programming languages being employed.

 Unicode strings may be represented and manipulated by commonly
available facilities. While this is universally true for all popular contemporary
languages, the internal encoding a language will use to represent Unicode
varies between languages; UTF-8 and UTF-16 are popular choices. When a
Unicode string is required for a test, it is assumed it will be represented in
the encoding native for the language.

 The language may make use of any available operating system services,
including the network stack.

These are both reasonable assumptions for all modern programming environments, and
also serve to prevent the scope of this document expanding unreasonably.

3 The Unicode consortium provide a set of comprehensive test data for UTS#46 processing. This contains over 7700
test data items.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 8

In other words, this framework is not designed for evaluating heavily restricted or
specialized languages and runtimes.

 4. Technical evaluation

4.1. Test suite
The test suite is designed to evaluate compliance with behavior described in RFCs and other
standards. The great advantage of standards-based evaluations is the relative ease with
which compliance can measured and the general interoperability that results.

The way in which libraries present services varies significantly between libraries. It should
not be assumed that the functions given below are matched by a single function in the
library under test. Rather, they are an attempt to describe function at a high enough level
that results from a test suite created for a particular library are comparable with results from
other libraries.

Evaluators are encouraged to consider if the test suite can be written in a way that aligns
with the current test framework of the library under adoption. Evaluators can then easily
make library maintainers aware of the tests and maximise the chances of future adoption of
the tests by the library maintainers.

A summary of the test cases is given below including a test case ID which is used later in the
document. A more detailed description, notes and illustrative test data follow.

Low-level functions (see section 4.1.1)

 L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup form
 L-A2U: IDNA2008 - Convert ASCII domain name to Unicode

For libraries that only support IDNA2003, the tests should be implemented using the
available IDNA2003 functions. Having only IDNA2003 support will give rise to test failures.

High level functions (see section 4.1.2)

 H-DNS: Domain name - syntactic check
 H-ES: Email address - syntactic check
 H-ID: Identifier- Identifier lookup

Appendix A provides some code samples for example test cases from the test suite.

Test cases

The full technical description of the proposed test cases is in a separate document. Each
test case has an input description, expected result, test purpose and standards reference.
The document describes multiple test cases, each of which should have at least one piece
of test data, preferably multiple where applicable. It is intended as a technical reference for
evaluators.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 9

Example test data
The descriptions of the tests below are accompanied by a small number of example test
data items with brief descriptions, largely drawn from UASG0004. These are for illustrative
purposes only and cover a small subset of the test cases in the full technical description.

 4.1.1 Low-level functions
o Low-level functions provide basic transformation services required by the

relevant IDNA RFCs.
 4.1.1.1 L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup

form
o Scenario: Convert a domain name in Unicode to ASCII using the process

described in RFC5891 for domain name lookup. If the domain name, or any
constituent label, is already in ASCII, the ASCII should not be altered.

References: RFC5891, UTS#46

Sample test data:

Input Expected output Comment

ua-test.link ua-test.link Verify ASCII passed
unaltered.

普遍接受-测试.top xn----
f38am99bqvcd5liy1cxsg.top

Verify subdomain
conversion.

ua-test.世界 ua-test.xn--rhqv96g Verify TLD conversion.

普遍接受-测试.世界 xn----
f38am99bqvcd5liy1cxsg.xn--
rhqv96g

Verify all-Unicode
conversion.

普遍接受-测试。世界 xn----
f38am99bqvcd5liy1cxsg.xn--
rhqv96g

Verify Open Dot is
recognised as label
separator.

ua-test.xn--rhqv96g ua-test.xn--rhqv96g Verify ACE encoded TLD is
passed as ASCII.

xn----
f38am99bqvcd5liy1cxsg.top

xn----
f38am99bqvcd5liy1cxsg.top

Verify ACE encoded
subdomain is passed as
ASCII.

xn----
f38am99bqvcd5liy1cxsg.xn--
rhqv96g

xn----
f38am99bqvcd5liy1cxsg.xn--
rhqv96g

Verify all-ACE encoded
domain is passed as ASCII.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 10

fußballplatz.de xn--fuballplatz-w6a.de (non-
transitional)

Verify IDNA2008
processing.

 4.1.1.2 L-A2U: IDNA2008 - Convert ASCII domain name to Unicode
o Scenario: Convert a domain name in ASCII to Unicode using the process

described in RFC5891. If the domain name, or any constituent label, is
already in Unicode or an ASCII label does not begin with the ACE prefix, the
original label should not be altered.

References: RFC5891, RFC3492

Sample test data:

Input Expected output Comment

ua-test.link ua-test.link Verify ASCII passed unaltered.

xn----
f38am99bqvcd5liy1cxs
g.top

普遍接受-测试.top Verify Unicode conversion in subdomain.

ua-test.xn--rhqv96g ua-test.世界 Verify Unicode conversion in TLD.

xn----
f38am99bqvcd5liy1cxs
g.xn--rhqv96g

普遍接受-测试.世界 Verify all-Unicode conversion.

xn--fuballplatz-w6a.de fußballplatz.de Verify IDNA2008.

 4.1.2 High-level functions
High-level functions reflect operations that an application is likely to want to perform but
which are not directly detailed in an IDNA RFC, rather they either build on the operations
specified therein or on separate RFCs relating to identifiers.

High-level functions provide basic syntactic checks and decomposition functions described
by the relevant RFCs for the identifier. For the purposes of this document, we define a
syntactic check as a check that a value obeys the rules of form (typically defined in a RFC) for
that identifier. In other words, that the value is a potentially valid. So, for example, for a
value to be a syntactically valid domain name it must pass all the rules laid down in the
relevant RFCs for a domain name - overall length and individual label lengths must be within
the prescribed limits, it must not contain any disallowed code points etc.

These functions may be provided directly by the library or implemented with standard
library functions.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 11

 4.1.2.1 H-DNS: Domain name - syntactic check
o Scenario: Perform a syntactic check on a domain name. Determine whether

the name appears to be correctly formed. If any part of the name already
appears to be in ASCII form (an A-label), verify it can be converted to
Unicode.

References: RFC5891, RFC1035, SAC053

Sample test data:

Name Syntactically
correct?

Comment

ua-test.link Yes Verify ASCII.

xn----
f38am99bqvcd5liy
1cxsg.TOP

Yes Verify ACE plus ASCII.

普遍接受-测试.top Yes Verify Unicode subdomain.

ua-test.世界 Yes Verify Unicode TLD.

ua-test.invalid Yes Verify non-existent domain, to ensure check is
purely syntactic.

ua-test..invalid No Verify empty label prohibited.

 4.1.2.2 H-ES: Email- syntactic check

Scenario: Perform a syntactic check on an email address. Determine whether
the address appears to be correctly formed.

References: RFC5891, RFC6531

Sample test data:

Name Syntactically
correct?

Comment

info@ua-test.link Yes Verify ASCII.

info@普遍接受-测试.top Yes Verify ASCII with Unicode subdomain.

info@普遍接受-测试.世界 Yes Verify ASCII mailbox, Unicode domain.

données@ua-test.link Yes Verify Unicode mailbox, ASCII domain.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 12

info@ua-test.invalid Yes Verify non-existent domain.

info@@ua-test.technology No Verify single @.

info@ua-test..technology No Verify empty label disallowed.

 4.1.2.3 H-ID: Identifier - Identifier lookup
o Scenario: Compare the identifier stored in the system against the one used to

authenticate by the user. The test cases below aims to validate proper
handling of internationalized identifiers by applications.

References: RFC8264

Sample test data:

Registration
username

Authentication
username

Matches? Comment

user user Yes Verify ASCII.

identité identité Yes Verify Unicode.

identité (é = U+00E9) identité
(é = U+0065

U+0301)

Yes Verify Unicode
normalization.

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 13

 Appendix A - Code examples

In practice, the low-level and high-level functions above are unlikely to be implemented in a
consistent fashion across different libraries. This appendix gives examples of how some
might be implemented as part of the test case using different libraries.

1. L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup
form

GNU Libidn2 (C)

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <idn2.h>

int main(int ac, char *av[])
{
 const char *name = u8"普遍接受-测试.世界";
 int rc;
 char *lookupname;

 setlocale(LC_ALL, "");

 rc = idn2_lookup_ul(name, &lookupname, 0);
 if (rc != IDN2_OK)
 {
 fprintf(stderr,
 "error: %s (%s, %d)\n",
 idn2_strerror(rc),
 idn2_strerror_name(rc),
 rc);
 return 1;
 }
 printf("DNS lookup of %s: %s\n", name, lookupname);
 free(lookupname);
 return 0;
}

$./a.out
DNS lookup of 普遍接受-测试.世界: xn----f38am99bqvcd5liy1cxsg.xn--rhqv96g

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 14

2. L-A2U: IDNA2008 - Convert ASCII domain name to Unicode

npm idna-uts46 (Javascript)

'use strict';

var uts46 = require('idna-uts46');
var ascii = "xn----f38am99bqvcd5liy1cxsg.xn--rhqv96g";
var unicode = uts46.toUnicode(ascii);

console.log("DNS " + ascii + ": " + unicode);

$ js example.js
DNS xn----f38am99bqvcd5liy1cxsg.xn--rhqv96g: 普遍接受-测试.世界

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 15

 Appendix B - References

UASG Documents

UASG004 - Use Cases for UA Readiness Evaluation

IDNA RFCs

RFC3492 - Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names
in Applications (IDNA)
RFC5890 - Internationalized Domain Names for Applications (IDNA): Definitions and
Document Framework
RFC5891 - Internationalized Domain Names in Applications (IDNA): Protocol
RFC5892 - The Unicode Code Points and Internationalized Domain Names for Applications
(IDNA)
RFC5893 - Right-to-Left Scripts for Internationalized Domain Names for Applications (IDNA)
RFC5894 - Internationalized Domain Names for Applications (IDNA): Background,
Explanation, and Rationale

IANA Registries

IDNA Parameters (IDNA Contextual Rules and Derived Properties)

Unicode

Unicode Technical Standard #46 - Unicode IDNA Compatibility Processing

PRECIS RFC

PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings
in Application Protocols

Special-use domain name RFCs

Some domain names are reserved for special use; that is, their use requires special handling
at some point in the name resolution process. A full list of these names is given in IANA list
of special-use domain names.
RFC6761 - Special-use domain names
RFC6762 - Multicast DNS
RFC7686 - The ".onion" special-use domain name

Internationalized email RFCs

RFC6530 - Overview and Framework for Internationalized Email
RFC6531 - SMTP Extension for Internationalized Email

Obsolete IDNA RFCs

These describe IDNA2003. They are kept here for reference when dealing with libraries that
only support IDNA2003.
RFC3490 - Internationalizing Domain Names in Applications (IDNA)
RFC3491 - Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)

 Reviewing Programming Languages and Frameworks for Compliance with Universal Acceptance

Good Practice UASG018 // 16

 Document History

Version Date Authors Notes

1.1 13 Jul 2018 Viagénie Shortened and updated version.

1.0 21 Aug 2017 Jim Hague
Sara Dickinson

Review call 2017-08-09 updates.

0.99 4 Aug 2017 Jim Hague
Sara Dickinson

Address comments on previous versions.
Prepping for review call.

0.98 11 Jul 2017 Jim Hague
Sara Dickinson

Add an Appendix in a separate document
to describe the test sets in detail and link
to documents containing example test
data.
Also some minor updates to the main
document.

0.97 11 Apr 2017 Jim Hague
Sara Dickinson
John Dickinson

Incorporate received comments and
corrections, review

0.96 10 Mar 2017 Jim Hague
Sara Dickinson

Revised to follow test suite based
approach

0.95 19 Jan 2017 Frank Michlick Updated with feedback after first team
review

0.90 24 Oct 2016 Frank Michlick First version

UASG018 - Addendum

Reviewing programming
languages and
frameworks for
compliance with
Universal Acceptance
good practice

Addendum

Universal Acceptance - Report UASG018 // 2

Version 1.0

August 21st, 2017

 Appendix C - Notes on development of test data sets

Appendix C - Notes on development of test data sets 2

Preamble 2
Requirements for test data sets 3

Test Data Sets 4
Low-level functions 4

L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup form 4
L-R2A: IDNA2008 - Convert registration label to ASCII registry form 7

L-A2U: IDNA2008 - Convert ASCII domain name to Unicode 11
L-DNC: IDNA2008 - Domain name equivalence comparison 12

High-level functions 14
H-DNS: Domain name - syntactic check 14

H-DND: Domain name - decompose into components 15
H-ES: Email address - syntactic check 16
H-ED: Email address - decompose into components 18
H-US: URL - syntactic check 20

H-UD: URL (IRI): decompose into components 24

Preamble

As noted in section 4 of the main document, the sample test data given in the document at present is illustrative and deliberately
incomplete. We recognise that practical experience of performing evaluations is necessary to guide the development of test data that will

Universal Acceptance - Report UASG018 // 3

be of practical benefit in delivering useful evaluation results. This appendix gives the design outline for test data sets for Universal
Acceptance programming library assessment.

As noted, sharing of the test data sets developed will be highly beneficial to this process.

Requirements for test data sets
These tests are not designed to perform an exhaustive probe for all possible implementation problems in a library. Rather, the aim of the
tests is to provide

● an indicator of the usefulness of the library;
● is the implementation generally correct, likely to be useful for most practical applications?
● are the common and some corner error cases correctly detected?

To that end, the tests are divided into General and Specific tests.
● General tests are tests that check overall common functionality works as expected; each test should be run several times
with inputs reflecting cases likely to reflect real-world use, and each run counted as a different test result. To give a more concrete
example, general domain name tests for Unicode base multilingual plane support should be run with input domain names from a
variety of common scripts that might approximate expected real-world use, e.g. French, Chinese, Hindi, and Arabic. In this example,
a single test will produce 4 test results.

● Specific tests check one particular piece of functionality works to specification; they have only the minimum input required
to give an answer to the question posed by the test case. So, for example, a single instance of a domain with a Unicode combining
mark as the first character is sufficient for test L-U2AS6 below. Similarly, some specific tests may in fact be covered by data from a
general test; for example, test L-U2AS1 is likely to be covered by data for L-U2AG5. These test descriptions are included for
completeness, but a test should be omitted, as it would be merely repeating an existing test.

The goal here is to ensure that the overall ratio of the tests passed to tests failed reflects the general usefulness and quality of the library.
The recommended balance of tests is to ensure that at least 50% of the test data for each test case are for General tests, such
that a library with reasonable coverage of the basics will score at least 50%. The remaining test data will differentiate between
such libraries and ones that also correctly handle the most common UA corner cases.

Universal Acceptance - Report UASG018 // 4

Test Data Sets

The following sections specify the different tests for each category. Each test includes a reference to the standards document that specifies
the behaviour the test is examining. There are several relevant standards, and they are not always completely consistent; hence the need
for a reference to guide the reader wishing to trace the requirement back to its source.

A set of test data for the low-level (L-) functions based on this document is under development and is intended for use by developers when
implementing the evaluation. The data is currently divided into valid (expected to convert without error) and invalid (expected to give an
error). These can be conveniently viewed in PDF form1 at valid-domains and invalid-domains. The authoritative original data is available in
UTF-8 text files valid-domains.txt and invalid-domains.txt.

Low-level functions

For current data on UNASSIGNED, DISALLOWED, CONTEXTJ and CONTEXTO, see this IANA page.

A comprehensive set of test data for these functions is available from the Unicode Consortium. As befits a comprehensive test set, it
contains a large number of tests probing for implementation weaknesses in the more obscure areas of the standards, and so lacks the
balance of tests required. However, it provides a fruitful source of raw test data.

 L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup form

Convert a domain name in Unicode to ASCII using the process described in RFC5891 for domain name lookup.

General tests:

Test ID Input: domain comprising the following, with expected ASCII
output

Expected
error

Test purpose Reference

1 PDF is used to display test data due to problems correctly displaying Unicode from the supplementary multilingual plane in Google Docs.

Universal Acceptance - Report UASG018 // 5

L-U2AG1 Plain ASCII None Verify that ASCII is passed
through unaltered

RFC5891

L-U2AG2 Plain ASCII with >3 char TLD None Verify long TLDs are handled RFC5891

L-U2AG3 Permitted non-ASCII from Unicode base multilingual plane with ASCII
TLD

None Verify basic Unicode support RFC5891

L-U2AG4 Permitted non-ASCII TLD from Unicode base multilingual plane with
ASCII rest of domain

None Verify basic Unicode support RFC5891

L-U2AG5 Permitted non-ASCII from Unicode base multilingual plane - entire
domain

None Verify basic Unicode support RFC5891

L-U2AG6 Permitted non-ASCII from right to left script in Unicode base
multilingual plane, complying with Bidi Rule (RFC5893)

None Verify basic Unicode support RFC5891

L-U2AG7 Permitted non-ASCII from Unicode supplementary multilingual plane
- entire domain

None Verify Unicode support for
higher planes

RFC5891

Universal Acceptance - Report UASG018 // 6

Specific tests:

Test ID Input: domain comprising the following, with expected ASCII
output

Expected
error

Test purpose Reference

L-U2AS1 Permitted non-ASCII from Unicode base multilingual plane, labels
separated with . FULL STOP (U+002E)

None Verify basic Unicode support UTS#46

L-U2AS2 Permitted non-ASCII from Unicode base multilingual plane, labels
separated with ．FULLWIDTH FULL STOP (U+FF0E)

None Verify basic Unicode support UTS#46

L-U2AS3 Permitted non-ASCII from Unicode base multilingual plane, labels
separated with 。IDEOGRAPHIC FULL STOP (U+3002)

None Verify basic Unicode support UTS#46

L-U2AS4 Permitted non-ASCII from Unicode base multilingual plane, labels
separated with ｡ HALFWIDTH IDEOGRAPHIC FULL STOP (U+FF61)

None Verify basic Unicode support UTS#46

L-U2AS5 Permitted non-ASCII from Unicode base multilingual plane with '–'
(two consecutive hyphens) in the third and fourth character
positions

Reject Ensure malformed Unicode
is rejected

RFC5891

L-U2AS6 Permitted non-ASCII from Unicode base multilingual plane with a
combining mark as a first character

Reject Ensure malformed Unicode
is rejected

RFC5891

Universal Acceptance - Report UASG018 // 7

L-U2AS7 Permitted non-ASCII from Unicode base multilingual plane but
containing a DISALLOWED character in a label

Reject Ensure malformed Unicode
is rejected

RFC5891

L-U2AS8 Permitted non-ASCII from Unicode base multilingual plane but
containing a conforming CONTEXTJ character in a label

None Verify CONTEXTJ support RFC5891

L-U2AS9 Permitted non-ASCII from Unicode base multilingual plane but
containing a non-conforming CONTEXTJ character in a label

Reject Verify CONTEXTJ support RFC5891

L-U2AS10 Permitted non-ASCII from Unicode base multilingual plane but
containing a conforming CONTEXTO character in a label

None Verify CONTEXTO support RFC5891

L-U2AS11 Permitted non-ASCII from Unicode base multilingual plane but
containing an UNASSIGNED character in a label

Reject Ensure malformed Unicode
is rejected

RFC5891

L-U2AS12 Permitted non-ASCII from Unicode base multilingual plane but
containing a label that is 64 characters or longer in ACE form

Reject Ensure malformed Unicode
is rejected

RFC5891

L-U2AS13 Permitted non-ASCII from Unicode supplementary multilingual plane
but containing a DISALLOWED character in a label

Reject Ensure malformed Unicode
is rejected

RFC5891

L-U2AS14 Permitted non-ASCII from Unicode supplementary multilingual plane
but containing an UNASSIGNED character in a label

Reject Ensure malformed Unicode
is rejected

RFC5891

L-U2AS15 Permitted non-ASCII from Unicode base multilingual plane, not in
Unicode Normalization Form C (NFC)

None Ensure NFC processing
happens before conversion

RFC5891

 L-R2A: IDNA2008 - Convert registration label to ASCII registry form

Universal Acceptance - Report UASG018 // 8

Convert a registration label to ASCII using the process described in RFC5891 Section 4. Input to this process must be a U-label2, preferably
accompanied by the expected A-label3, or an A-label.

General tests:

Test ID Input: label comprising the following, with expected ASCII
output

Expected
error

Test purpose Reference

L-R2AG1 Permitted non-ASCII from Unicode base multilingual plane None Verify basic Unicode support RFC5891

L-R2AG2 Permitted non-ASCII from right to left script in Unicode base
multilingual plane, complying with Bidi Rule (RFC5893)

None Verify basic Unicode support RFC5891

L-R2AG3 Permitted non-ASCII from Unicode supplementary multilingual plane None Verify Unicode support for
higher planes

RFC5891

Specific tests:

Test ID Input: label comprising the following, with expected ASCII
output

Expected
error

Test purpose Reference

L-R2AS1 Plain ASCII label Accept Verify that ASCII is passed
through unaltered

RFC5891

2 An IDNA-label string of Unicode characters, in Normalization Form C (NFC), and including at least one non-ASCII character.
3 An ASCII-Compatible Encoding (ACE) form of an IDNA-valid label.

Universal Acceptance - Report UASG018 // 9

L-R2AS2 Permitted non-ASCII from Unicode base multilingual plane
containing . FULL STOP (U+002E)

Reject Check input is label UTS#46

L-R2AS3 Permitted non-ASCII from Unicode base multilingual plane
containing ．FULLWIDTH FULL STOP (U+FF0E)

Reject Check input is label UTS#46

L-R2AS4 Permitted non-ASCII from Unicode base multilingual plane
containing 。IDEOGRAPHIC FULL STOP (U+3002)

Reject Check input is label UTS#46

L-R2AS5 Permitted non-ASCII from Unicode base multilingual plane
containing ｡ HALFWIDTH IDEOGRAPHIC FULL STOP (U+FF61)

Reject Check input is label UTS#46

L-R2AS6 Permitted non-ASCII from Unicode base multilingual plane with '–'
(two consecutive hyphens) in the third and fourth character
positions

Reject Ensure malformed Unicode
is rejected

RFC5891

L-R2AS7 Permitted non-ASCII from Unicode base multilingual plane with a
combining mark as a first character

Reject Ensure malformed Unicode
is rejected

RFC5891

L-R2AS8 Permitted non-ASCII from Unicode base multilingual plane but
containing a DISALLOWED character

Reject Ensure malformed Unicode
is rejected

RFC5891

L-R2AS9 Permitted non-ASCII from Unicode base multilingual plane but
containing a conforming CONTEXTJ character

None Verify CONTEXTJ support RFC5891

L-R2AS10 Permitted non-ASCII from Unicode base multilingual plane but
containing a non-conforming CONTEXTJ character

Reject Verify CONTEXTJ support RFC5891

Universal Acceptance - Report UASG018 // 10

L-R2AS11 Permitted non-ASCII from Unicode base multilingual plane but
containing a conforming CONTEXTO character

None Verify CONTEXTO support RFC5891

L-R2AS12 Permitted non-ASCII from Unicode base multilingual plane but
containing a non-conforming CONTEXTO character

Reject Verify CONTEXTO support RFC5891

L-R2AS13 Permitted non-ASCII from Unicode base multilingual plane but
containing an UNASSIGNED character

Reject Ensure malformed Unicode
is rejected

RFC5891

L-R2AS14 Permitted non-ASCII from Unicode base multilingual plane which is
64 characters or longer in ACE form

Reject Ensure malformed Unicode
is rejected

RFC5891

L-R2AS15 Permitted non-ASCII from Unicode base multilingual plane, but A-
label not in all lowercase

Reject A-label validation RFC5891

L-R2AS16 Permitted non-ASCII from Unicode base multilingual plane, but A-
label ending '-' (hyphen)

Reject A-label validation RFC5891

L-R2AS17 Permitted non-ASCII from Unicode base multilingual plane, but A-
label->U-label does not match supplied U-label

Reject U/A-label matching RFC5891

L-R2AS18 Only A-label, not all in lowercase Reject A-label validation RFC5891

L-R2AS19 Only A-label, that ends in '-' (hyphen) Reject A-label validation RFC5891

L-R2AS20 Permitted non-ASCII from Unicode base multilingual plane, not in
Unicode Normalization Form C (NFC)

Reject Registry input must be NFC RFC5891

Universal Acceptance - Report UASG018 // 11

L-R2AS21 Permitted non-ASCII from right to left script in Unicode base
multilingual plane, not complying with Bidi Rule

Reject See if Bidi checking
happens.

RFC5891/5
893

 L-A2U: IDNA2008 - Convert ASCII domain name to Unicode

Convert a domain name in ASCII to Unicode using the process described in RFC5891.

General tests:

Test ID Input: domain comprising the following ASCII, with expected
Unicode output

Expected
error

Test purpose Reference

L-A2UG1 Plain ASCII None Verify that ASCII is passed
through unaltered

RFC5891

L-A2UG2 Plain ASCII with >3 char TLD None Verify long TLDs are handled RFC5891

L-A2UG3 ACE domain with ASCII TLD None Verify basic Unicode support RFC5891

L-A2UG4 ACE TLD with ASCII rest of domain None Verify basic Unicode support RFC5891

L-A2UG5 Permitted non-ASCII from Unicode base multilingual plane - entire
domain

None Verify basic Unicode support RFC5891

L-A2UG6 Permitted non-ASCII from Unicode supplementary multilingual plane
- entire domain

None Verify basic Unicode support RFC5891

Specific tests:

Universal Acceptance - Report UASG018 // 12

Test ID Input: domain comprising the following ASCII, with expected
Unicode output

Expected
error

Test purpose Reference

L-A2US1 A-label, not all in lowercase Reject A-label validation RFC5891

L-A2US2 A-label that ends in '-' (hyphen) Reject A-label validation RFC5891

 L-DNC: IDNA2008 - Domain name equivalence comparison

Compare two Unicode domain names for equivalence. Comparison must be performed as specified in RFC5891, comparing either A-label
or U-labels.

The input domains for the following tests should be those used in the tests described in L-U2A: IDNA2008 - Convert Unicode domain name
to ASCII lookup form. Each input should be used to create two test cases; checking that comparing the domain succeeds, and a counter-
example checking that comparing the domain to a different domain fails.

General tests:

Test ID Input: domain comprising the
following

Compare
to

Result Expected
error

Test purpose Reference

L-DNCG1 Plain ASCII Plain ASCII Equal None Verify that ASCII is passed
through unaltered

RFC5891

L-DNCG2 Plain ASCII with >3 char TLD Plain ASCII Equal None Verify long TLDs are
handled

RFC5891

L-DNCG3 Permitted non-ASCII from Unicode base
multilingual plane with ASCII TLD

ACE
encoding

Equal None Verify basic Unicode
support

RFC5891

Universal Acceptance - Report UASG018 // 13

L-DNCG4 Permitted non-ASCII from Unicode base
multilingual plane with ASCII TLD

Unicode Equal None Verify basic Unicode
support

RFC5891

L-DNCG5 Permitted non-ASCII TLD from Unicode
base multilingual plane with ASCII rest of
domain

ACE
encoding

Equal None Verify basic Unicode
support

RFC5891

L-DNCG6 Permitted non-ASCII TLD from Unicode
base multilingual plane with ASCII rest of
domain

Unicode Equal None Verify basic Unicode
support

RFC5891

L-DNCG7 Permitted non-ASCII from Unicode base
multilingual plane - entire domain

ACE
encoding

Equal None Verify basic Unicode
support

RFC5891

L-DNCG8 Permitted non-ASCII from Unicode base
multilingual plane - entire domain

Unicode Equal None Verify basic Unicode
support

RFC5891

L-DNCG9 Permitted non-ASCII from Unicode
supplementary multilingual plane - entire
domain

ACE
encoding

Equal None Verify basic Unicode
support

RFC5891

L-DNCG10 Permitted non-ASCII from Unicode
supplementary multilingual plane - entire
domain

Unicode Equal None Verify basic Unicode
support

RFC5891

Specific tests:

Universal Acceptance - Report UASG018 // 14

Test ID Input: domain comprising
the following

Compare to Result Expected
error

Test purpose Reference

L-DNCS1 Unicode that does not form a
valid domain

Same Unicode Reject Check Unicode validation RFC5891

L-DNCS2 Permitted non-ASCII from
Unicode base multilingual
plane - entire domain, label
separator . FULL STOP
(U+002E)

Unicode, but using
alternate label
separator e.g. 。
IDEOGRAPHIC FULL
STOP (U+3002)

Not
equal

None Check comparison is
Unicode

RFC5891

L-DNCS3 Permitted non-ASCII from
Unicode base multilingual
plane with ASCII TLD, ACE
encoded, TLD capitalised

ACE encoding, TLD
not capitalised

Equal None Check comparison is
case-insensitive ASCII

RFC5891

High-level functions

 H-DNS: Domain name - syntactic check

Perform a syntactic check on a domain name. Determine whether the name appears to be correctly formed. If any part of the name
already appears to be in ASCII form (an A-label), verify it can be converted to Unicode.

This test should run all the tests described in L-U2A: IDNA2008 - Convert Unicode domain name to ASCII lookup form above and verify that
the conversion does not produce an error. In addition, the following tests should also be run. These are all specific tests.

Test ID Input: domain comprising the following Correct? Test purpose Reference

H-DNSS1 Permitted non-ASCII from Unicode base multilingual plane with ASCII Yes Verify Unicode support RFC5891

Universal Acceptance - Report UASG018 // 15

'.invalid' TLD

H-DNSS2 Permitted non-ASCII from Unicode base multilingual plane with empty
label ('..')

No Check domain
composition

RFC1035

H-DNSS3 Permitted non-ASCII from Unicode base multilingual plane with no label
separator character, i.e. none of the following:
. FULL STOP (U+002E)
． FULLWIDTH FULL STOP (U+FF0E)

。 IDEOGRAPHIC FULL STOP (U+3002)

｡ HALFWIDTH IDEOGRAPHIC FULL STOP (U+FF61)

No Check domain
composition

SAC053

 H-DND: Domain name - decompose into components

Split a domain name into its component labels.

Tests for this function do not test for domain name validity.

General tests:

Test ID Input: domain comprising the following Expected
error

Test purpose Reference

H-DNDG1 Plain ASCII None Verify basic support RFC5891

H-DNDG2 Plain ASCII with >3 char TLD None Verify long TLDs are handled RFC5891

H-DNDG3 Permitted non-ASCII from Unicode base multilingual plane with ASCII
TLD, labels separated with . FULL STOP (U+002E)

None Verify basic support UTS#46

Universal Acceptance - Report UASG018 // 16

H-DNDG4 Permitted non-ASCII TLD from Unicode base multilingual plane with
ASCII rest of domain, labels separated with . FULL STOP (U+002E)

None Verify basic support UTS#46

H-DNDG5 Permitted non-ASCII from Unicode base multilingual plane - entire
domain, labels separated with . FULL STOP (U+002E)

None Verify basic support UTS#46

H-DNDG6 Permitted non-ASCII from Unicode base multilingual plane - entire
domain, single label

Reject Check domain composition SAC053

Specific tests:

Test ID Input: domain comprising the following Expected
error

Test purpose Reference

H-DNDS1 Permitted non-ASCII from Unicode base multilingual plane - entire
domain, labels separated with ．FULLWIDTH FULL STOP (U+FF0E)

None Verify basic support UTS#46

H-DNDS2 Permitted non-ASCII from Unicode base multilingual plane - entire
domain, labels separated with 。IDEOGRAPHIC FULL STOP (U+3002)

None Verify basic support UTS#46

H-DNDS3 Permitted non-ASCII from Unicode base multilingual plane - entire
domain, labels separated with ｡HALFWIDTH IDEOGRAPHIC FULL STOP
(U+FF61)

None Verify basic support UTS#46

 H-ES: Email address - syntactic check

Perform a syntactic check on an email address. Determine whether the address appears to be correctly formed.

Universal Acceptance - Report UASG018 // 17

General tests:

The general test email addresses should include all domain test cases from the general tests from Domain name: syntactic check.

Test ID Input: email address comprising the following Expected
error

Test purpose Reference

H-ESG1 Plain ASCII local part, '@' permitted non-ASCII from Unicode base
multilingual plane domain

None Verify Unicode
support

RFC6531

H-ESG2 Unicode local part from base multilingual plane, '@' plain ASCII domain None Verify Unicode
support

RFC6531

H-ESG3 Unicode local part from base multilingual plane, '@' permitted non-ASCII
from Unicode base multilingual plane domain

None Verify Unicode
support

RFC6531

H-ESG4 Unicode local part from base multilingual plane including Bidi text, '@'
permitted non-ASCII from Unicode base multilingual plane domain

None Verify Unicode
support

RFC6531

H-ESG5 Unicode local part from supplementary multilingual plane, '@' permitted
non-ASCII from Unicode supplementary multilingual plane domain

None Verifying local part
handling

RFC6531

Specific tests:

Test ID Input: email address comprising the following Expected
error

Test purpose Reference

H-ESS1 Plain ASCII local part including '@', '@' plain ASCII domain Reject Verifying local part RFC6531

Universal Acceptance - Report UASG018 // 18

handling

H-ESS2 Quoted plain ASCII string local part including '@', '@' plain ASCII domain None Verifying local part
handling

RFC6531

H-ESS3 Unicode local part from base multilingual plane including '@', '@' plain ASCII
domain

Reject Verifying local part
handling

RFC6531

H-ESS4 Quoted Unicode string local part from base multilingual plane including '@',
'@' plain ASCII domain

None Verifying local part
handling

RFC6531

H-ESS5 Unicode local part from supplementary multilingual plane including '@', '@'
permitted non-ASCII from Unicode supplementary multilingual plane domain

Reject Verifying local part
handling

RFC6531

H-ESS6 Quoted Unicode string local part from supplementary multilingual plane, '@'
permitted non-ASCII from Unicode supplementary multilingual plane domain

None Verify Unicode support RFC6531

H-ESS7 Quoted Unicode string local part from supplementary multilingual plane plus
'@', '@' permitted non-ASCII from Unicode supplementary multilingual plane
domain

None Verifying local part
handling

RFC6531

 H-ED: Email address - decompose into components

Decompose email addresses into mailbox plus domain. These tests are not syntactic checks, but checks that the decomposition is correct.

General tests:

The general test email addresses should include all domain test cases from the general tests from Domain name: syntactic check.

Universal Acceptance - Report UASG018 // 19

Test ID Input: email address comprising the following Expected
error

Test purpose Reference

H-EDG1 Plain ASCII local part, '@' plain ASCII domain None Verify basic support RFC6531

H-EDG2 Plain ASCII local part, '@' plain ASCII domain with >3 char TLD None Verify long TLDs are
handled

RFC6531

H-EDG3 Plain ASCII local part, '@' permitted non-ASCII from Unicode base
multilingual plane domain

None Verify Unicode
support

RFC6531

H-EDG4 Unicode local part from base multilingual plane, '@' plain ASCII domain None Verify Unicode
support

RFC6531

H-EDG5 Unicode local part from base multilingual plane, '@' permitted non-ASCII
from Unicode base multilingual plane domain

None Verify Unicode
support

RFC6531

H-EDG6 Unicode local part from base multilingual plane including Bidi text, '@'
permitted non-ASCII from Unicode base multilingual plane domain

None Verifying local part
handling

RFC6531

H-EDG7 Unicode local part from supplementary multilingual plane, '@' permitted
non-ASCII from Unicode supplementary multilingual plane domain

None Verifying local part
handling

RFC6531

Specific tests:

Test ID Input: email address comprising the following Expected
error

Test purpose Reference

Universal Acceptance - Report UASG018 // 20

H-EDS1 Plain ASCII local part including '@', '@' plain ASCII domain Reject Verifying local part
handling

RFC6531

H-EDS2 Quoted plain ASCII string local part including '@', '@' plain ASCII domain None Verifying local part
handling

RFC6531

H-EDS3 Unicode local part from base multilingual plane including '@', '@' plain ASCII
domain

Reject Verifying local part
handling

RFC6531

H-EDS4 Quoted Unicode string local part from base multilingual plane including '@',
'@' plain ASCII domain

None Verifying local part
handling

RFC6531

H-EDS5 Unicode local part from supplementary multilingual plane including '@', '@'
permitted non-ASCII from Unicode supplementary multilingual plane
domain

Reject Verifying local part
handling

RFC6531

H-EDS6 Quoted Unicode string local part from supplementary multilingual plane, '@'
permitted non-ASCII from Unicode supplementary multilingual plane
domain

None Verify Unicode
support

RFC6531

H-EDS7 Quoted Unicode string local part from supplementary multilingual plane
including '@', '@' permitted non-ASCII from Unicode supplementary
multilingual plane domain

None Verifying local part
handling

RFC6531

 H-US: URL - syntactic check

Perform a syntactic check on a URL. Determine whether the URL appears to be correctly formed.

A complete set of tests verifying IRI syntax is complex. These tests focus on checking the UA aspects of IRI syntax.

Universal Acceptance - Report UASG018 // 21

General tests:

The general test IRIs should include all domain test cases from the general tests from Domain name: syntactic check.

Test ID Input: IRI comprising the following Expected
error

Test purpose Reference

H-USG1 Plain ASCII IRI None Verify basic support RFC3897

H-USG2 Plain ASCII IRI, with username from permitted Unicode and port None Verify basic support RFC3987

H-USG3 IRI with path of permitted Unicode from base multilingual plane None Verify Unicode support RFC3987

H-USG4 IRI with path of permitted Unicode from base multilingual plane
containing permitted Bidi text

None Verify Unicode support RFC3987

H-USG5 IRI with path of permitted Unicode from supplementary
multilingual plane

None Verify Unicode support RFC3987

Specific tests:

Test ID Input: IRI comprising the following Expected
error

Test purpose Reference

H-USS1 Plain ASCII IRI, with username and port None Verify basic support RFC3987

H-USS2 Plain ASCII IRI without scheme, otherwise plain ASCII Reject Verify scheme checking RFC3987

H-USS3 Unicode scheme, otherwise plain ASCII Reject Verify scheme checking RFC3987

Universal Acceptance - Report UASG018 // 22

H-USS4 Plain ASCII IRI, with username and port None Verify basic support RFC3987

H-USS5 Plain ASCII IRI, with username from non-permitted Unicode and
port

Reject Verify username
checking

RFC3987

H-USS6 Plain ASCII IRI, with username and non-numeric port Reject Verify port checking RFC3987

H-USS7 IRI with path containing non-permitted Unicode from base
multilingual plane

Reject Verify Unicode support RFC3987

H-USS8 IRI with path of permitted Unicode from base multilingual plane
containing non-permitted Bidi text (direction formatting
characters)

Reject Verify Unicode support RFC3987

H-USS9 IRI with path containing non-permitted Unicode from
supplementary multilingual plane

Reject Verify Unicode support RFC3987

H-USS10 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment of permitted Unicode from base multilingual
plane

None Verify Unicode support RFC3987

H-USS11 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment of permitted plus private Unicode from base
multilingual plane

Reject Verify Unicode support RFC3987

H-USS12 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment including non-permitted Unicode from base
multilingual plane

Reject Verify Unicode support RFC3987

Universal Acceptance - Report UASG018 // 23

H-USS13 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment of permitted Unicode from base multilingual
plane containing permitted Bidi text

None Verify Unicode support RFC3987

H-USS14 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment of permitted Unicode from base multilingual
plane containing non-permitted Bidi text

Reject Verify Unicode support RFC3987

H-USS15 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment of permitted Unicode from supplementary
multilingual plane

None Verify Unicode support RFC3987

H-USS16 IRI with path of permitted Unicode from base multilingual plane
and '#' fragment including non-permitted Unicode from
supplementary multilingual plane

Reject Verify Unicode support RFC3987

H-USS17 IRI with path of permitted Unicode from base multilingual plane
and '?' query of permitted Unicode from base multilingual plane

None Verify Unicode support RFC3987

H-USS18 IRI with path of permitted Unicode from base multilingual plane
and '?' query of permitted including private Unicode from base
multilingual plane

None Verify Unicode support RFC3987

H-USS19 IRI with path of permitted Unicode from base multilingual plane
and '?' query including non-permitted Unicode from base
multilingual plane

Reject Verify Unicode support RFC3987

Universal Acceptance - Report UASG018 // 24

H-USS20 IRI with path of permitted Unicode from base multilingual plane
and '?' query of permitted Unicode from base multilingual plane
containing permitted Bidi text

None Verify Unicode support RFC3987

H-USS21 IRI with path of permitted Unicode from base multilingual plane
and '?' query of permitted Unicode from base multilingual plane
containing non-permitted Bidi text

Reject Verify Unicode support RFC3987

H-USS22 IRI with path of permitted Unicode from base multilingual plane
and '?' query of permitted Unicode from supplementary
multilingual plane

None Verify Unicode support RFC3987

H-USS23 IRI with path of permitted Unicode from base multilingual plane
and '?' query including non-permitted Unicode from
supplementary multilingual plane

Reject Verify Unicode support RFC3987

 H-UD: URL (IRI): decompose into components

Decompose IRIs into scheme, username, host, port, path, query and fragment. Tests for this function do not test for domain name validity.

General tests:

Test ID Input: IRI comprising the following Expected
error

Test purpose Reference

H-UDG1 Plain ASCII IRI None Verify basic support RFC3987

H-UDG2 Plain ASCII IRI, plain ASCII domain with >3 char TLD None Verify long TLDs are RFC3987

Universal Acceptance - Report UASG018 // 25

handled

H-UDG3 IRI with domain and path in Unicode from base multilingual plane None Verifying Unicode
support

RFC6531

H-UDG4 IRI with domain and path in Unicode from base multilingual plane containing
Bidi text

None Verifying Unicode
support

RFC6531

H-UDG5 IRI with domain and path in Unicode from supplementary multilingual plane None Verifying Unicode
support

RFC6531

Specific tests:

Test ID Input: IRI comprising the following Expected
error

Test purpose Reference

H-UDS1 Plain ASCII IRI without scheme Reject Verifying basic support RFC6531

H-UDS2 Plain ASCII IRI with username None Verifying basic support RFC6531

H-UDS3 Plain ASCII IRI with port None Verifying basic support RFC6531

H-UDS4 Plain ASCII IRI with username and port None Verifying basic support RFC6531

H-UDS5 IRI with Unicode scheme Reject Verifying Unicode
support

RFC6531

Universal Acceptance - Report UASG018 // 26

H-UDS6 IRI with port and with username and domain in Unicode from base
multilingual plane

None Verifying Unicode
support

RFC6531

H-UDS7 IRI with port and with username and domain in Unicode from
supplementary multilingual plane

None Verifying Unicode
support

RFC6531

H-UDS8 IRI with domain and path and '#' fragment in Unicode from base
multilingual plane

None Verifying Unicode
support

RFC6531

H-UDS9 IRI with domain and path and '#' fragment in Unicode from base
multilingual plane containing permitted Bidi text

None Verifying Unicode
support

RFC6531

H-UDS10 IRI with domain and path and '?' query in Unicode from base multilingual
plane

None Verifying Unicode
support

RFC6531

H-UDS11 IRI with domain and path and '?' query in Unicode from base multilingual
plane containing permitted Bidi text

None Verifying Unicode
support

RFC6531

H-UDS11 IRI with domain, path, '#' fragment and '?' query in Unicode from base
multilingual plane

None Verifying Unicode
support

RFC6531

H-UDS12 IRI with domain, path, '#' fragment and '?' query in Unicode from base
multilingual plane, all containing permitted Bidi text

None Verifying Unicode
support

RFC6531

H-UDS13 IRI with domain and path and '#' fragment in Unicode from
supplementary multilingual plane

None Verifying Unicode
support

RFC6531

Universal Acceptance - Report UASG018 // 27

H-UDS14 IRI with domain and path and '?' query in Unicode from supplementary
multilingual plane

None Verifying Unicode
support

RFC6531

H-UDS15 IRI with domain, path, '#' fragment and '?' query in Unicode from
supplementary multilingual plane

None Verifying Unicode
support

RFC6531

	UASG018-A Programming Language Evaluation Criteria - 2019-04-23 - JL05092019
	UASG018-b-Programming Language Evaluation Criteria 2019-04-29 JL

