

Universal Acceptance
Readiness
Framework

6 April 2020

UA Readiness Framework - Report UASG026

UA Readiness Framework - Report UASG026 // 2

TABLE OF CONTENTS

Introduction 3
Categories of Applications 3
Components 3
Web-based Application 4
Considerations 4

Native Application 4
Gating Steps 5
Modeling Applications 5
Web-based Application 5
Native Application 6

Gating Approach 6
Gating Considerations 7
Web-Based Application Components 7
Applications 8
Expected Behaviors 8

Accept 9
Validate 9
Process on Input 9
Store 9
Process on Output 9
Display 9
Tests 9

AT: Accept Test 9
VT: Validate Test 9
P1T: Process on Input Test 9
ST: Store test 9
P2T: Process on Output Test 10

DT: Display Test 10
Proposed Approach 10
Web-Based Application: CMS Sub-Category 11
Summary 11
References 11

UA Readiness Framework - Report UASG026 // 3

Introduction
Universal Acceptance (UA) is about enabling the use of identifier technologies that were not
present at the beginning of the Internet deployment, especially when it comes to
internationalization. More specifically, and for the purpose of this document, we summarize
UA as the conformance status of an application or service that supports the following
features:

● Internationalized Domain Name (IDN)

○ Because some software expects a domain name to be in ASCII.

● Email Address Internationalization (EAI)

○ Because some software expects the local part (e.g. the string at the left of the

“@” sign for left-to-right scripts) of an email address to be in ASCII.

○ Because some mail servers or services do not expect to receive emails with

the local part of the email address in non-ASCII.

● Long top-level domain (TLD) strings

○ Because some software expects a TLD string to be no longer than three

characters.

● Added/removed TLD strings

○ Because some software checks TLDs based on an out of date and static list

of possible TLDs.

Regarding TLD strings being added or removed, it is worth noting that contrary to some user
beliefs, TLDs are often added or removed from the root zone, even on a daily basis. For
example, during a 10 day period in November 2019, 7 TLDs were removed from the root.

Identifying whether or not an application of any kind, on any platform, correctly supports UA
can be complicated. The purpose of this paper is to define a scope and framework that will
identify the issues facing the developer community so that they can work to fix them and
increase UA readiness.

Related work on UA is available at https://uasg.tech/information/developers/.

Categories of Applications
For the purpose of this study, applications are either web-based or native as described
below.

Web-based application

● The User Interface (UI) is in a browser.

● The browser is either standalone or embedded. Note that some applications seem

native but in fact are displaying HTML pages using an embedded browser. An

embedded browser may be in desktop applications, cars, wearables, consumer

products, and more.

Native application

● Either computer-based or on mobile platforms (mobile phone, tablets, etc.)

● Runs directly on an operating system (OS).

● Does not primarily use a browser or an embedded browser view.

https://uasg.tech/information/developers/

UA Readiness Framework - Report UASG026 // 4

Components

An application is typically made up of various components. Each application category
defined above has its own set of components. This work takes a deliberately simplified
approach and will only concentrate on the major components of an application. It may mean
that sometimes the model is not as accurate for some applications. Splitting the application
into components enables the UA compliance work to be applied to various gates between
components, as discussed later. Gates can be viewed as functional separations in the
application.

Web-based Application
A web-based application is made up of the following components:

● Web browser: The browser is another application; however, it is an integral part of a

web application delivery. Note that sometimes web browsers appear as embedded in

a native application.

● Front-end: The front-end is the component that creates and enables code to be

executed into the browser. It is responsible for creating HTML and allowing HTML,

CSS, and Javascript code to be executed in the browser.

● Back-end: The back-end is the component running on a remote server which

typically executes more complex tasks, as well as maintaining state and accessing a

database.

● Database: The database is the component storing information on a remote server. A

database may be managed by a typical SQL database engine or even just a file.

● Filesystem: The filesystem is the place where files are stored on the operating

system (OS).

● External Service: Sometimes an application uses an external service to complement

its core functionalities. A typical example of an external service is an authentication

service provided internally to an enterprise or by a cloud service provider.

Considerations
● Given the nature of current web-based applications, this model is simplified but it

does present typical components used in software development and is sufficient

for the purpose of this work.

● Modern web browsers offer local storage which is usually limited in size and

capabilities, but could be used by application developers to store UA identifiers.

● In modern cloud based applications, the front-end and the back-end are typically

stateless, so they can be deployed horizontally dynamically in multiple instances as

load requires. Therefore, the front-end and the back-end typically do not involve

application data storage.

● Most web sites are typically engineered as applications; therefore, we assume that

for the purpose of this work, a web site is a web-based application. Thus, the

proposed model may be applied to a web site.

Native Application
A native application is made of the following components:

● User Interface (UI): The visual interface that interacts with the user. This interface is

responsible for collecting user input such as domain names or email addresses.

● Internal: The code processing the user’s input and providing the functions of the

application.

● Database: The database is the component storing application information. A

UA Readiness Framework - Report UASG026 // 5

database may be managed by a typical SQL database engine, or even just a file.

The database may be local or remote.

● Filesystem: The filesystem is the place where files are stored on the operating

system (OS).

● External Service: Sometimes an application uses an external service to complement

its core functionalities. A typical example of an external service is an authentication

service provided internally to an enterprise or by a cloud service provider.

Gating Steps
The UA community has defined the following steps within an application to process UA
related identifiers:

1. Accept: how an application accepts the user input which consists of UA identifiers.

2. Validate: how an application validates the UA identifier.

3. Process: after validation, how an application processes the UA identifier.

4. Store: after processing, how an application stores the UA identifier.

5. Display: how an application displays the UA identifier.

This work proposes the addition of a step between store and display in order to provide a full
sequence of steps that can be used as gates to verify conformance. The new list is as
follows:

1. Accept: how an application accepts the user input which consists of UA identifiers.

2. Validate: how an application validates the UA identifier.

3. Process: after validation, how an application processes the UA identifier.

4. Store: after processing, how an application stores the UA identifier.

5. Process: after storing, how an application processes the UA identifier, typically for

displaying.

6. Display: how an application displays the UA identifier.

It should be noted that for some applications, some steps or gates may not be relevant. For
example, some applications may not store identifiers, therefore steps 4 and 5 would be
irrelevant.

Modeling Applications
The two categories of applications are modeled based on their respective components and
the gating steps.

Tables below show Y when the component plays a role in the step, and M when the
component may play a role.

Web-Based Application

Accept Validate Process Store Process Display

Browser Y Y
(only IDN
in URL)

 M
(local

storage)

Y

Frontend

M M

M

UA Readiness Framework - Report UASG026 // 6

Backend

M M

M

Database Y

Filesystem

Y

External service

M M M M

Native Application

Accept Validate Process Store Process Display

UI Y M

Y

Internal

M M

M

Database Y

Filesystem

Y

External
service

M M M M

Gating Approach
This work proposes a gating approach to verify UA conformance of an application. This
gating approach is based on applying tests at the various steps, now named gates, on the
various components.

The following test categories are defined.

Keyword Expansion

AT Accept test

VT Validate test

P1T Process test on the input

ST Store test

P2T Process test on the output

DT Display test

The following figure shows the proposed gating approach. Each test category is applied at a
different step of the application.

UA Readiness Framework - Report UASG026 // 7

Gating Considerations
Modern software architectures are complex with containers, micro services, multi-tier,
caches at all levels, cloud services, etc. In fact, an application is a web of components that
have complex interactions. Even developers involved in the project have difficulties
pinpointing the issues because of the complexity.

While steps (accept, validate, process, store, display) are defined, some may be aggregated
together so that there is no separation between some of the steps. For example, validating
and processing might take place together within the same method on the identifier object.
This work proposes a model, but frontiers between components are often blurred. Modern
software architectures often use a variety of cloud services from different cloud service
providers. The code of the services themselves, and that of their components, is normally
not exposed. Therefore, these services should be considered black boxes with no way to
look into them; they can only be tested from the interface that they provide. Given their
dominance in the software development market, they must be taken into account in verifying
UA conformance.

Examples of such services are third party identity/authentication/authorization services. For
a software developer, it is easier to use Google, Facebook, Apple or other pre-existing user
authentication services, as it enables the developer to focus on aspects which will
differentiate the relevant service without having to incur time and cost in ‘reinventing the
wheel’ for commonly occurring functions. It also provides a more seamless experience for
the end-users. As domains or email addresses are often used as identifiers, or as backup
identifiers, they become a significant part of UA conformance of an application when such
applications uses these services. Email address are not only used as unique identifiers for
users, but there are often backup emails used for restoring the account or resetting the
password which also must support UA conformance.

Web-Based Application Components
This section lists some web-based application components with examples. This list is not
exhaustive.

Category Examples Type of Application

Browser Chrome, Firefox, Edge, Safari, Opera,
Brave, UC, 360, Sogou, Baidu, Tencent, QQ

Component of web-based
application

Web server nginx, Apache, lighttpd, tomcat, IIS Backend component of
web-based application

TLS Certificates openssl, letsencrypt Backend component of
web-based application

Backend web
framework/libraries

Django/Python, Flask/Python, Spring/Java,
Express/NodeJS, Ruby on Rails,

Component of web-based
application

UA Readiness Framework - Report UASG026 // 8

Lumen/PHP, .Net, Laravel

Frontend web
framework/libraries

Angular, React, Vue.js, Backbone, Ember
Bootstrap

Component of web-based
application

Applications
This section list some applications, either web-based or native, that would be candidates for
UA conformance testing.

Email (webmail) Gmail, Xgenplus, Coremail,
Hotmail/Outlook/Live, Yahoo, Datamail,
Mailrelay

Web-based application

Email (native client (MUA,
MSA))

Gmail, Outlook, Xgenplus, Foxmail Native

Email (server (M*A) MSexchange,postfix, Dovecot, Xgenplus,
courier

Native

Email (service provider) Gmail, Hotmail/Outlook/Live, Yahoo,
datamail CoreMail, QQ mail; 163/126 mail;
China Mobile 139.com

Native

Antispam (AS) Spamjadoo, Comodo, SpamAssassin,
SpamTitan

Native

OS tools Curl, Wget, nslookup, Dig, Telnet, SSH,
Host, Hostname, SCP, Ping, Tracert,
PathPing

Native

CMS WordPress, Joomla, Drupal, Typo3, Discuz,
Pageadmin

Web-based application

Social Media Web Apps Facebook, Twitter, Pinterest, Instagram,
LinkedIn, WhatsApp, WeChat, Sina Weibo,
QQ

Web-based application

Social Media Apps Facebook, Twitter, Pinterest, Instagram,
LinkedIn, WhatsApp, WeChat, Sina Weibo,
QQ

Native

E-Commerce Web Apps Amazon, Alibaba, Ebay Web-based application

It is worth noting that the same application is often delivered in two flavors: a web-based and
a native version. For example, Facebook is available as a web-based application and as a
native mobile application. However, for the purpose of UA conformance, those should be
considered separate and different since one may behave differently to the other regarding
UA.

Expected Behaviors
This section describes the expected behavior of the applications at each gate.

UA Readiness Framework - Report UASG026 // 9

Accept
● All forms possible: i.e. IDN – either U-Label or A-Label.

Validate

● Normalize if non-ASCII

● Optionally:

○ Verify if valid IDN

○ Verify if label is too long (> 63 octets, A-label if IDN)

● Maybe (has pros and cons):

○ Verify if TLD is active

Process on Input

● Does not truncate

● Does not inadvertently convert to ASCII. For example, converting ‘é’ to ‘e’.

Store

● EAI: local part UTF8

● IDN: either U-Label or A-Label

● Long/new TLD: as is; no truncation

Process on Output

Display
● Should display in UTF8

● May also display IDN as A-label

Tests
This section lists the various high-level tests that can be applied at each gate. The various
possible datasets are described in the UASG-004 document.

AT: Accept Test
● EAI: verify if it accepts any UTF8

● IDN: verify if it accepts any UTF8

● Long/new TLD: verify if it accepts any TLD as long label

VT: Validate Test

● Verify if it normalizes a non-normalized UTF8 label

● Verify if it validates a valid/non-valid domain name

● Verify if it validates a valid/non-valid IDN

● Verify if it validates a valid/non-valid long/new TLD

P1T: Process on Input Test

● Verify that the input of the processing does not change the output, unless it

normalizes the string.

ST: Store test
● EAI:

https://uasg.tech/wp-content/uploads/documents/UASG004-en-digital.pdf

UA Readiness Framework - Report UASG026 // 10

○ Given good EAI input, verify that the database content for that input is correct:

i.e. either identical or normalized version of the local part. The domain part, if

IDN, could be either A-Label or U-Label form.

○ Given bad EAI input, verify that the database content for that input is not

saved.

● IDN:

○ Given good IDN input, verify that the database content is either A-Label or U-

Label form.

○ Given bad IDN input, verify that the database content for that input is not

saved.

● Long/new TLD strings:

○ Given long TLD string as input, verify that the database content is not

truncated.

○ Given too long TLD string as input, verify that the database content for that

input is not saved.

○ Given new TLD string as input, verify the database content contains the new

TLD.

P2T: Process on Output Test

● Given a good value in the database, verify that the value going to be displayed by the

UI is correct: local part is UTF8, IDN is in U-Label format, long string TLD is not

truncated, new TLD string is processed.

DT: Display Test
● Given a good value in the database, verify that the displayed value by the UI is

correct: local part is UTF8, IDN is in U-Label format, long string TLD is not truncated,

new TLD (from the root) is shown, removed TLD (from the root) is not shown.

Normalization
Normalization is required since the same string can be represented by different codepoints.
Unicode defines various normalization forms[UTR15]. In absence of specifics, developers
may use Normalization Form C (NFC).

Proposed Approach
The proposed approach to verify UA compliance of an application is as follows:

● Identify the components used in the application.

● Verify the UA compliance of each component.

● Test the application for UA compliance, from an input/output perspective without

looking “under the hood.”

● If tests results are negative, then investigate by applying the gating approach to the

various interfaces of the components, as described before.

It should be noted that a component may not be UA compliant, but that does not mean the
whole application is not UA compliant. This is because the developers of the application may
have added another layer above the base component to support UA. For example, as shown
by testing Java libraries for UA compliance, the JAVA base JRE is not UA compliant as it
supports IDNA2003. However, a developer may use and add a new library that supports UA,
so the fact that an application is implemented in Java does not mean it is not UA compliant.

UA Readiness Framework - Report UASG026 // 11

This framework is intended for testing software applications. It may not be applicable as is
for some other use cases such as libraries or infrastructure components. SMS messaging is
an example of an infrastructure that may carry internationalized identifiers, but does not
necessarily apply directly with this framework.

Web-Based Application: CMS Sub-Category
The following is an application of the approach to the web-based application category of
Content Management Systems (CMS). This is a non-comprehensive list of CMS, but
provides the most popular ranked by various sites. The market leader is WordPress.

These are all open-source. The code can be downloaded and installed on a server, or many
can also be used on hosting services.

Browser Frontend Backend Database Gates/test

control points

WordPress Any PHP PHP/Apache MySQL/MariaDB AT, VT, P1T,
ST, P2T, DT

Joomla Any PHP PHP/Apache MySQL/MariaDB AT, VT, P1T,
ST, P2T, DT

Drupal Any PHP PHP/Apache
/nginx

MySQL/MariaDB/
PostgreSQL/SQLite

AT, VT, P1T,
ST, P2T, DT

Typo3 Any PHP PHP/Apache
/nginx

MySQL/MariaDB/
PostgreSQL/SQLite

AT, VT, P1T,
ST, P2T, DT

One can see that these share the same architecture and same components. Same tests can
be applied to all.

Summary
This work provides a framework for scoping UA conformance work on software applications.
It defines two categories of application and a series of gates for testing the application
against various tests.

References
[UASG] https://uasg.tech
[UASG-004] Use Cases for UA Readiness Evaluation, April 2017, https://uasg.tech/wp-
content/uploads/documents/UASG004-en-digital.pdf
[UTR15] Unicode Normalization Forms, Unicode® Standard Annex #15,
https://unicode.org/reports/tr15/

https://uasg.tech/
https://uasg.tech/wp-content/uploads/documents/UASG004-en-digital.pdf
https://uasg.tech/wp-content/uploads/documents/UASG004-en-digital.pdf
https://unicode.org/reports/tr15/

	Introduction
	Categories of Applications
	Components
	Web-based Application
	Considerations
	Native Application

	Gating Steps
	Modeling Applications
	Web-Based Application
	Native Application

	Gating Approach
	Gating Considerations

	Web-Based Application Components
	Applications
	Expected Behaviors
	Accept
	Validate
	Process on Input
	Store

	Tests
	AT: Accept Test
	VT: Validate Test
	P1T: Process on Input Test
	ST: Store test
	P2T: Process on Output Test
	DT: Display Test

	Proposed Approach
	Web-Based Application: CMS Sub-Category
	Summary
	References

