

UA-Readiness of Some Programming Language

Libraries and Frameworks - Report UASG037

UA-Readiness of
Some Programming
Language Libraries
and Frameworks
(Phase 3)

25 January 2022

Universal Acceptance - Report UASG037 // 2

TABLE OF CONTENTS

Executive Summary 4

Introduction 6

Methodology 7

Datasets 7

Results 8

Discussion 8

iOS - Swift - MessageUI (EAI) 8

iOS - Swift - URLSession (IDNA2008) 10

IOS - Swift - Alamofire (IDNA2008) 11

IOS - Swift – IDNA-Cocoa (IDNA2008) 11

PHP - cURL (IDNA2008) 12

PHP - mail (EAI) 13

PHP - emailValidator (EAI) 13

PHP – Guzzle (IDNA2008) 14

PHP – intl (IDNA2008) 14

PHP – PHPMailer (EAI) 15

PHP – Symfony (IDNA 2008, EAI) 15

Android - Introduction 16

Android - Kotlin - okHttp (IDNA2008) 17

Android - Kotlin - HttpUrlConnection (IDNA2008) 17

Android - Kotlin - Retrofit (IDNA2008) 17

Android - Kotlin - fuel (IDNA2008) 18

Android - Kotlin - Volley (IDNA2008) 18

Android - Kotlin - Apache HttpClient (IDNA2008) 18

Android - Kotlin - Jakarta Mail (EAI) 18

Android - Kotlin - Email Intent (EAI) 19

A Note on Windows 19

Conclusion 20

Android 20

Windows 21

iOS 21

Bug Reports 21

Test Reports 22

Bug Reports 22

Universal Acceptance - Report UASG037 // 3

About Cofomo

Cofomo is an IT consulting firm based in Canada which joined forces with Viagénie, and its
experts, in July 2021.

Viagénie has been involved with ICANN on multiple Universal Acceptance (UA) and
Internationalized Domain Name (IDN) projects in the past, some of which include the
development of the Label Generation Rules Toolset, implementation of a framework for
testing languages and libraries against UA test cases, implementation of a test suite for
RDAP compliance, and development of the Technical Compliance Monitoring system to
monitor the technical infrastructure of generic top-level domain (gTLD) registry and
registrars. The staff has been also involved in standards at IETF as co-author of the IDN
RFCs (IDNA2003), IDN working group chair, and author of RDAP Bootstrap registry RFC.

Universal Acceptance - Report UASG037 // 4

Executive Summary

This study is conducted by the Universal Acceptance Steering Group (UASG) covering
additional programming language testing beyond what has been published in UASG018A.
The following table shows the summary of additional testing, with highlighting in green
shows UA-ready, in yellow shows UA-ready but developer needs to be careful, and red
shows Not UA-ready libraries across the different platforms.

Language Lib Name Platform Compliance on

dataset (%)

Datasets

Swift MessageUI IOS 97.8 HEs

Swift URLSession IOS 26.8 HDns

Swift Alamofire IOS 26.8 HDns

Swift IDNA-Cocoa IOS 80.0 LU2A ,LA2U

PHP cURL*

Windows 92.9 HDns

Linux 83.9 HDns

PHP mail Windows 83.7 HEs

PHP emailValidator Windows & Linux 100 HEs

PHP Guzzle Windows & Linux 92.9 HDns

PHP intl Windows & Linux 95.4 LU2A ,LA2U

PHP PHPMailer Windows & Linux 26.1 HEs (validation

+ sending)

PHP Symfony

Http-client Windows & Linux 92.9 HDns

Polyfill-intl-idn Windows & Linux 93.8 LU2A ,LA2U

Mailer Windows & Linux 33.7 HEs

Kotlin okHttp Android 85.7 HDns

Kotlin HttpUrlConnection Android 85.7 HDns

Kotlin Retrofit Android 85.7 HDns

Kotlin fuel Android 85.7 HDns

Kotlin Volley Android 85.7 HDns

Kotlin Apache HttpClient Android 10.7 HDns

Kotlin Jakarta Mail Android 70.7 HEs

Kotlin Email Intent Android 91.3 HEs

*PHP cURL compliance for Linux is below the one for Windows even though Linux is compliant because some of
the failing tests on Linux are edge cases that do not reflect the overall compliance with UA and Windows has
some false positive on invalid labels.

https://uasg.tech/download/uasg-018a-ua-compliance-of-some-programming-language-libraries-and-frameworks-en/

Universal Acceptance - Report UASG037 // 5

The table below contains a summary the results of the previous programming language

testing reported in UASG018A.

Language Lib Name Compliance on dataset (%) Datasets

c libcurl 84.3 HEs

c libidn2 95.2 LA2U ,LU2A

csharp mailkit 84.3 HEs

csharp microsoft 83.9 LA2U ,LU2A

go idna 79 LA2U ,LU2A

go mail 100 HEs

go smtp 19.6 HEs

java commons-validator 85.5 HEs ,HDns

java guava 77.8 HDns

java icu 93.5 LA2U ,LU2A

java jakartamail 82.4 HEs

java jre 71 LA2U ,LU2A

js idna-uts46 85.5 LA2U ,LU2A

js nodemailer 84.3 HEs

js validator 94.2 HEs ,HDns

python3 django_auth 48.1 HEs ,HId

python3 email_validator 86.3 HEs

python3 encodings_idna 67.7 LU2A ,LA2U

python3 idna 100 LA2U ,LU2A

python3 smtplib 84.3 HEs

rust idna 87.1 LA2U ,LU2A

rust lettre 7.8 HEs

https://uasg.tech/download/uasg-018a-ua-compliance-of-some-programming-language-libraries-and-frameworks-en/

Universal Acceptance - Report UASG037 // 6

Introduction

This study is the third in a series that the UASG has conducted on programming languages
and libraries; earlier results can be found in UASG018A. The earlier phases focused on 22
libraries and the Linux platform. This phase expands on the previous work by adding mobile
platform libraries (Android and iOS) and PHP on the Linux and Windows platforms.

This third phase added 25 libraries-platforms to the set, as detailed in the following table:

Language Platform
Framework/Libr

ary
Tested Versions

PHP Linux cURL PHP8.0

PHP Linux emailValidator 3.1.1

PHP Linux Guzzle 7.0

PHP Linux intl PHP8.0

PHP Linux mailer 6.5

PHP Linux symfony 5.3

PHP Windows cURL PHP8.0

PHP Windows emailValidator 3.1.1

PHP Windows Guzzle 7.0

PHP Windows intl PHP8.0

PHP Windows mailer 6.5

PHP Windows symfony 5.3

PHP Windows mail (native) PHP8.0

Swift iOS AlamoFire 5.4.4

Swift iOS URLSession iOS 14.4, Swift 5.3.2

Swift iOS MessageUI iOS 14.7.1, Swift 5.3.2

Swift iOS IDNA-Cocoa 870ba3e

Kotlin Android Apache hc5-0.1.1

Kotlin Android EmailIntent Android 11 (API level 30)

Kotlin Android Fuel 2.3.1

Kotlin Android HttpUrlConnection Android 11 (API level 30)

Kotlin Android JakartaMail 2.0.1

Kotlin Android okHttp 4.9.1

Kotlin Android retrofit 2.9.0

Kotlin Android volley 1.2.1

https://uasg.tech/download/uasg-018a-ua-compliance-of-some-programming-language-libraries-and-frameworks-en/

Universal Acceptance - Report UASG037 // 7

Methodology

In order to verify UA-readiness, five datasets of sample Internationalized Domain Names
(IDNs) and email addresses were used. The next section gives a short description of each
one. These datasets are described in detail in UASG004 and UASG018.

For Email Address Internationalization (EAI), a dummy SMTP server, based on the Mailhog
SMTP server, was used to verify the support of the SMTPUTF8 SMTP option by the mailer
libraries and frameworks. However, the released Mailhog does not support SMTPUTF8 so
we used a fork that enhances it to support SMTPUTF8. This dummy server, running within a
docker, simulates communication with a real SMTP server from the library/framework
perspective and checks if it behaves as expected.

For the iOS platform, a fake POP3 from Greenmail was listening on the local network to
completely simulate the mail delivering process on the real device.

For a library like MessageUI, a crawler testing the emails list was setup to interact with the
interface on the iPhone as a real human would do. The script responsible to launch this
crawler had the task to check if emails were sent or not.

Datasets

H_DNS

Performs a syntactic check on a domain name. Determines whether the name appears to be
correctly formed. If any part of the name already appears to be in ASCII form (an A-label),
verify it can be converted to Unicode. Ref. RFC5891, RFC1035, SAC053.

H_ES (to check EAI)

Performs a syntactic check on an email address. Determines whether the address appears
to be correctly formed. Ref. RFC5891, RFC6531.

H_ID

Compares the identifier stored in the system against the one used to authenticate the user.
The test cases aim to validate proper handling of internationalized identifiers by applications.
Ref. RFC8264.

L_A2U

Converts a domain name in ASCII to Unicode using the process described in RFC5891. If
the domain name or any constituent label is already in Unicode, or an ASCII label does not
begin with the ACE prefix, the original label should not be altered. Ref. RFC5891.

L_U2A

Converts a domain name in Unicode to ASCII using the process described in RFC5891 for
domain name lookup. If the domain name or any constituent label is already in ASCII, the
ASCII should not be altered. Ref. RFC5891, UTS#46.

https://uasg.tech/wp-content/uploads/documents/UASG004-en-digital.pdf
https://uasg.tech/wp-content/uploads/documents/UASG018-en-digital.pdf
https://github.com/mailhog/smtp
https://github.com/mailhog/smtp
https://github.com/dcormier/smtp/tree/dc/ext

Universal Acceptance - Report UASG037 // 8

Results

This section lists the libraries and their UA compliance levels, and also shows which dataset
was used to test the library. The different colors shows if the library is UA-ready or not.
Yellow indicates that some edge cases are not supported or the library needs to be used
along with another one to be UA compliant.

Legend

UA-ready

 UA-ready but developer needs
to be careful

Not UA-ready

Discussion

Detailed results are available the links provided at the end of this document.

iOS - Swift - MessageUI (EAI)

Even if the iOS native mail app does support EAI, it is the programmatical API offered to
developers to prefill an email message and send it that was tested. Unfortunately, it seems
that Apple provides only a legacy programmatical API called MFMailComposeViewController
that communicates “Recipient addresses should be specified as per RFC5322” in its
setToRecipients method documentation. This translates to a form that doesn’t display the
recipient’s field whenever one inputs an email address including non-ASCII characters, like
eai-testé@domain.tld email in the figure below:

https://developer.apple.com/documentation/messageui/mfmailcomposeviewcontroller

Universal Acceptance - Report UASG037 // 9

The test makes sure that the email address under test was also set in the email’s body
which does support non-ASCII characters. As soon as one removes the acute on the “é” and
transforms it to an ASCII “e” the recipient shows up:

Fortunately, there is a workaround for developers looking to support EAI in iOS. Since the
native mail application does support EAI, one can build a “mailto:” URL that, once clicked,
will trigger the mail app to open:

func sendEmail(subject: String, body: String, to: String) {

 // THIS IS THE EAI WAY: GO THROUGH THE MAIL NATIVE APP:

 var url = "mailto:\(to)?subject=test&body=\(to)"

 url = url.addingPercentEncoding(withAllowedCharacters:

.urlQueryAllowed).unsafelyUnwrapped

 UIApplication.shared.open(URL(string:

url).unsafelyUnwrapped)

This URL method has the consequence to exit the user from the application they are
currently using instead of opening a modal like MFMailComposeViewController (from
MessageUI) inside the current app. This will be a major issue for many app developers.
Lastly, it is worth noting that the app warns the user every time there is a suspicious
character in the email (like two “@”):

Universal Acceptance - Report UASG037 // 10

The UA testing team opened a bug in the internal Apple feedback developers form and
submitted a corresponding public StackOverflow about the issue and this workaround.

iOS - Swift - URLSession (IDNA2008)

URLSession relies on the URL swift object. Unfortunately, this object is known to have
issues (see https://forums.swift.org/t/idn-punycode-in-url/35358 for instance) with what it
calls in its internal documentation "illegal characters". Depending on what method the
underlying framework uses, URL can unwrap a "nil" string if it considers that there are
"illegal characters" in it:

/// Initialize with string.

///

/// Returns `nil` if a `URL` cannot be formed with the string

/// (for example, if the string contains characters that are

/// illegal in a URL, or is an empty string).

 public init?(string: String)

Testing raises many errors for legal IDNs like below:

Error Domain=kCFErrorDomainCFNetwork Code=-1002 "(null)"}

The -1002 error code is described as:

case cfurlErrorUnsupportedURL = -1002

It seems that the URLSession framework unwraps the URL with a method non-compliant
with IDNA2008 returning "null" or "nil". Despite multiple attempts and implementations, it
seems to have no workaround forcing URLSession to unwrap the URL internal string
differently.

https://stackoverflow.com/questions/69213585/mfmailcomposeviewcontroller-not-displaying-recipients-for-internationalized-emai
https://forums.swift.org/t/idn-punycode-in-url/35358

Universal Acceptance - Report UASG037 // 11

Nevertheless, the URLSession has no issue with the tested Punycode encoded URLs
(starting with "xn--"). Thus, one can simply use a U-Label-to-A-Label converting library to
make it work prior to calling URLSession:

URLSession.shared.dataTask(with: URL(unicodeString: "ua-

testé.test")!)

The unicodeString is an extension constructor parameter added to the

URLSession/URL Apple framework by the IDNA-Cocoa library.

The bug is reported in

• Stackoverflow

• Swift's issue tracker Jira

• Apple Feedback Assistant (URL not public)

IOS - Swift - Alamofire (IDNA2008)

Alamofire is built on top of URLSession and URL objects. Plus, no conversion to an A-label
is done before querying an URL containing a U-label. Benchmarks on tested URLs are the
same as URLSession. This library must therefore be used with IDNA-Cocoa like
URLSession:

 AF.request("ua-testé.test".idnaEncoded)

Where idnaEncoded is an extended property added to the native swift String object by the

IDNA-Cocoa library.

Since Alamofire uses the same URL framework as URLSession, we didn't duplicate the bug
report.

IOS - Swift – IDNA-Cocoa (IDNA2008)

IDNA-Cocoa seems to be the only Swift package available for IDNA2008. Official releases
support only IDNA2003. However, the master branch latest commit until now (hash=
870ba3ee80ca3555f7ee0da61189531441d10145 of May 22th 2021) supports IDNA2008;
developers must be careful when importing the package:

https://github.com/Wevah/IDNA-Cocoa
https://github.com/Wevah/IDNA-Cocoa
https://stackoverflow.com/questions/69945768/swift-url-returns-nil-when-the-url-contains-an-internationalized-domain-name-id
https://bugs.swift.org/browse/SR-15487
https://github.com/Wevah/IDNA-Cocoa
https://github.com/Wevah/IDNA-Cocoa

Universal Acceptance - Report UASG037 // 12

Using the latest commit, the library had a very good compliance level on our dataset except
for BIDI rules management and DISALLOWED characters.

PHP - cURL (IDNA2008)

In PHP, the first library to do an HTTP request one could think of is the cURL native
extension. PHP cURL has been tested on Windows and Linux as described below.

Windows

Developers don’t need to install anything, just enable it in their “php.ini” config file.

Unfortunately, The cURL C library embedded as a PHP 8.0 extension on Windows uses
“Windows.h: IdnToUnicode/IdnToAscii” functions which are known to be only IDNA2003
compliant.

The PHP bug is reported here, but since it is more related to Windows internal libraries, we
opened a bug in the Windows’s Feedback Hub as well.

Linux

The curl extension may need to be installed on some distributions as some provide a php-
curl package. On the distribution used for our tests (Arch Linux), curl was included and
compiled with libidn2 in the PHP installation.

The PHP curl extension is IDNA 2008 compliant according to our tests; the conversion is
performed by libidn2 therefore any bug in libidn2 will impact it.
Some tests failed however because curl is too permissive on some invalid URLs: empty
label and no label separator.

https://bugs.php.net/bug.php?id=81616
https://aka.ms/AAeuxwu

Universal Acceptance - Report UASG037 // 13

It is noteworthy that in our tests, we struggled to get PHP to properly provide UTF-8 encoded
strings for IDN conversion while all configurations were correct (locales on the Linux host
and in php.ini file). The way to solve the problem was to provide the locale programmatically
with the following PHP call:

setlocale(LC_ALL, "en_US.UTF-8");

PHP - mail (EAI)

The native mailing feature of PHP is the first tool made available to developers using its
language to send emails. PHP mail has been tested on Windows only as described below.

Windows

Unfortunately, PHP mail is not compliant: the SMTPUF8 flag is not sent to the SMTP server
and the domain part of the email is not converted to an A-label beforehand.

Interestingly, all UTF-8 emails during testing were not dropped but sent “as-is” nevertheless.
There is no pull request nor issue registered in the PHP bug report list to update PHP mail to
support EAI.

An alternative to this native mail feature of PHP is PHPMailer, which does have some issues
recorded to support EAI, as confirmed by our results below.

We logged a new bug report here.

Linux
PHP mail on Linux is using sendmail to actually send emails, thus PHP is not involved in the
email processing part. It was therefore not tested.

Sendmail version 8.17.1 released in August 2021 includes an experimental support for
SMTPUTF8.

PHP - emailValidator (EAI)

EmailValidator is an email address validator that includes many validation methods such as
DNS validation. The validator tested here is called RFCValidator and validates email
addresses against several RFCs.

This library is used in the Symfony PHP framework to validate email addresses.

EmailValidator has been tested on Windows and Linux as described below.

Linux

EmailValidator is fully compliant with EAI according to our tests. It is highly recommended to
use this library for validating email recipients before providing them to another library for

https://www.php.net/manual/en/function.mail.php
https://github.com/PHPMailer/PHPMailer
https://bugs.php.net/bug.php?id=81615

Universal Acceptance - Report UASG037 // 14

sending emails. However, this would only validate the email address compliance, whether
the email is sent correctly or not will depend on the EAI compliance of the underlying email
sending library.

Windows
Same compliance as Linux.

PHP – Guzzle (IDNA2008)

Guzzle is a PHP HTTP client. It provides two handles to make HTTP requests, one with
PHP curl and the other with PHP streams. Both methods were tested and gave the same
results. Guzzle has been tested on Windows and Linux as described below.

Linux

Guzzle is IDNA 2008 compliant, providing that the correct IDN flags are provided.
It relies on the PHP IDN conversion methods provided by the PHP internationalization
module tested below.

The client should be instantiated with the following IDN option:

'idn_conversion' => IDNA_DEFAULT

| IDNA_USE_STD3_RULES

| IDNA_CHECK_BIDI

| IDNA_CHECK_CONTEXTJ

| IDNA_NONTRANSITIONAL_TO_ASCII

Windows
Same compliance as Linux.

PHP – intl (IDNA2008)

PHP intl extension contains the internationalization methods for PHP, including IDN
conversion from and to A-label. PHP intl has been tested on Windows and Linux as
described below.

Linux

PHP intl is IDNA 2008 compliant but the compliance is implemented according to UTS #46
in ICU, therefore, some DISALLOWED characters are not detected and would need to be
corrected upstream. To get the IDNA 2008 compliance right, flags have to be used:

idn_to_utf8($url, IDNA_DEFAULT

| IDNA_USE_STD3_RULES

| IDNA_CHECK_BIDI

| IDNA_CHECK_CONTEXTJ

| IDNA_NONTRANSITIONAL_TO_UNICODE,

INTL_IDNA_VARIANT_UTS46, $idnaInfo);

Universal Acceptance - Report UASG037 // 15

idn_to_ascii ($url, IDNA_DEFAULT

| IDNA_USE_STD3_RULES

| IDNA_CHECK_BIDI

| IDNA_CHECK_CONTEXTJ

| IDNA_NONTRANSITIONAL_TO_ASCII,

INTL_IDNA_VARIANT_UTS46, $idnaInfo);

A bug report was filled on the PHP bug tracking system but was suspended as it needs to be
fixed in the ICU C library and not in PHP source code.

Windows
Same compliance as Linux.

PHP – PHPMailer (EAI)

PHPMailer is a popular PHP library for sending emails. It also provides an email address
validator. PHPMailer has been tested on Windows and Linux as described below.

Linux

This library is not UA compliant; its validator even rejects Unicode. It supports Unicode
domains but its conversion is not IDNA 2008 compliant. It is highly recommended not to use
it.

According to a response from the developer on Stack Overflow, support for EAI is planned.

Some bugs are already reported for RFC6531 support therefore no new bug was filled on
that topic. However, a bug on domain part conversion was filled to use the correct IDN flags
and we provided a pull request that was merged upstream and released in version 6.5.2 (25
November 2021).

Windows
Same compliance as Linux.

PHP – Symfony (IDNA 2008, EAI)

Symfony is a well-known PHP framework that provides many reusable components, some of
which were tested for UA.

Windows
Same compliance as Linux.

Linux
Http-client (IDNA 2008)

Symfony HTTP client uses either its own IDN converter or the one provided in PHP intl
extension; however it does not provide the flags that would make it IDNA 2008 compliant
and its API does not offer a way to provide those flags.

https://bugs.php.net/bug.php?id=81628
https://stackoverflow.com/questions/56516188/how-to-send-php-mail-with-international-recipient
https://github.com/PHPMailer/PHPMailer/issues/2563
https://github.com/PHPMailer/PHPMailer/pull/2564

Universal Acceptance - Report UASG037 // 16

It is recommended to make the conversion with the right flags before providing the URL to
Symfony HTTP client.

A bug report was submitted along with a pull request that was merged upstream and
released in versions 4.4.34, 5.3.11, 5.4.0-RC1 and 6.0.0-RC1.

Polyfill-intl-idn (IDN 2008)

This is their own version of IDN conversion methods provided by Symfony to replace PHP
intl when it is not installed or enabled. They should be called exactly as the one of intl (with
the same flags) and provide the same results.

Mailer (EAI)

The Symfony component for sending email is not EAI compliant. It allows sending email with
addresses containing non-ASCII local parts but does not send the SMTPUTF8 flag. It also
converts domains in A-label but without full IDNA 2008 compliance.

Finally, it may be too permissive on email address validation as it uses the emailValidator
PHP library with another validator other than RFCValidator and doesn’t allow it to be
changed. It is recommended to make a preliminary email address validation with
emailValidator, providing RFCValidator and to convert the domain in A-label with IDNA 2008
before providing it. However, if your email address contains a non-ASCII local-part, the mail
server will certainly end the connection with an error.

Three bug reports were filled:

• Email domain conversion to A-label: a fix was provided along with the fix for HTTP

client and merged upstream.

• Correctly fail when @ is provided in local-part unquoted

• Implements RFC6531

Android - Introduction

Android SDK 30 was used for this testing and the test Android application was developed
using Kotlin. Java would have led to equivalent results as the libraries and frameworks used
for our testing are the same for both languages, Java being able to use Kotlin libraries and
conversely.

All libraries were used in their last version at the date of testing (September 2021).

https://github.com/symfony/symfony/issues/44091
https://github.com/symfony/symfony/issues/44092
https://github.com/symfony/symfony/issues/44092
https://github.com/symfony/symfony/issues/44094
https://github.com/symfony/symfony/issues/44136

Universal Acceptance - Report UASG037 // 17

Android - Kotlin - okHttp (IDNA2008)

okHttp is a very popular HTTP client in the Java and Android environments. However, it is
only compatible with IDNA2003 as it relies on java.net.IDN. A bug report was closed in 2020
showing they are not willing to support IDNA2008.

Starting from Android 4.4, this library is used by Android to implement
java.net.HttpUrlConnection on Android.

Although Android implementation of the java.net.IDN package uses ICU4j that is IDNA 2008
compliant, two major issues prevent it from fulfilling IDNA2008 compliance:

• Some specific flags have to be used for fully compliant label conversions and are not

set in their package rewriting.

• They are using ICU4j static functions that are only IDNA 2003 compliant.

Therefore, okHttp and all implementations relying on Android network stack would be tied to
an IDNA2003 compliance except if they perform their own IDN conversion.

We created another bug report for IDNA2008, providing a more appropriate way to solve the
issue than the old one. The maintainer was responsive and willing to fix it, at least for
Android that provides packages for IDNA directly in the SDK, but the fix broke some of their
tests and the fact that IDNA2008 is not implemented in the most used web browser
(Chrome) made them stop implementing that support.

It is therefore highly recommended to make Google implement IDNA2008 instead of
IDNA2003 in their products if we want to encourage the community to follow.

Android - Kotlin - HttpUrlConnection (IDNA2008)

HttpUrlConnection is a HTTP client interface in Java and many HTTP libraries are using it to
make actual HTTP connections. On Android, starting from Android 4.4, its default
implementation is using okHttp (see above). Therefore, HttpUrlConnection is only IDNA2003
compliant.

We made a bug report on the Android bug tracker that has been transferred to the
engineering team. We also mentioned to the team that other Google products are affected.
Resolving those issues at Google is a major step in IDNA2008 adoption.

Android - Kotlin - Retrofit (IDNA2008)

Retrofit has the same maintainers as okHttp and is largely using okHttp for its stack.
Therefore, it is IDNA2003 compliant only.

https://github.com/square/okhttp/issues/1615
https://github.com/square/okhttp/issues/6910
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
https://issuetracker.google.com/issues/206015971

Universal Acceptance - Report UASG037 // 18

No bug report has been filled as Retrofit is using okHttp stack and is maintained by the same
company.

Android - Kotlin - fuel (IDNA2008)

Fuel performs percent encoding on URLs but it uses java.net.HttpUrlConnection that
correctly performs the conversion in A-label. However, this goes with IDNA2003 compliance
only.

We submitted a bug report and a pull request to perform conversion to A-label instead of
percent encoding on domains.

Android - Kotlin - Volley (IDNA2008)

Volley uses java.net.HttpUrlConnection, therefore, it is only IDNA2003 compliant.

No bug has been reported as it is developed by Google and is using HttpUrlConnection. The
HttpUrlConnection bug report is sufficient to cover Volley compliance.

Android - Kotlin - Apache HttpClient (IDNA2008)

Android’s first versions were using a fork of Apache HttpClient but then Google abandoned
it. Development still continues but the library is not IDN compliant and should not be used
without proper validation and transformation to A-label.

NB: Multiple Apache HttpClient versions exists. We’ve tested the version from Android
extensions for Apache HttpClient, targeting the most recent Android versions. That is
basically the stock version with utilities for Android.

We filled an issue on their issue tracker.

Android - Kotlin - Jakarta Mail (EAI)

Although it seems to consider some scripts invalid in domains and fails when the domain is
not in normalization form NFC, Jakarta mail correctly validates email addresses and
supports EAI. It is a good solution to directly send email on the Android ecosystem, but
expect errors with some domains.

https://github.com/kittinunf/fuel/issues/819
https://github.com/kittinunf/fuel/pull/821
https://hc.apache.org/httpcomponents-client-4.5.x/android.html
https://ok2c.github.io/httpclient-android-ext/
https://ok2c.github.io/httpclient-android-ext/
https://issues.apache.org/jira/browse/HTTPCLIENT-2185

Universal Acceptance - Report UASG037 // 19

We submitted a bug report to the Jakarta maintainers.

Android - Kotlin - Email Intent (EAI)

From Android documentation, an Intent is a messaging object you can use to request an
action from another app component. Email is one of the common intents provided by
Android. In practicality, an email intent is a way to provide some application pre-filled
information for an email to be sent (recipient, subject, body).

Intents are designed to be generic, therefore the email intent is only a generic interface to
provide data to another application and it does not perform any validation on email. The data
is however correctly transmitted to the email application that would have to perform all the
required validation and support EAI.

As a result, it would not be fair to say email intent is not EAI-ready as it is not meant to be,
but it provides data as-is to other applications. Therefore, evaluating email intent compliance
would mean evaluating all Android email applications.

A Note on Windows

There was a surprise encountered during testing on the Windows platform. The shell testing
script responsible to pass IDN test cases to the PHP CLI program was not working until this
“Beta” Windows feature has been enabled:

https://github.com/eclipse-ee4j/mail/issues/589
https://developer.android.com/guide/components/intents-filters

Universal Acceptance - Report UASG037 // 20

By enabling this checkbox, a restart is triggered. This restart provoked a “blue screen” during
testing on a virgin Windows installation, possibly due to the “Beta” nature of the UTF-8
support on Windows.

See https://en.wikipedia.org/wiki/Unicode_in_Microsoft_Windows#UTF-8 for more details.

This checkbox should be checked by any PHP or non PHP developers worried about
internationalization and UA because even if Windows is provided in many languages, these
languages are supported through a codepage under the hood that is not UTF-8. This can
trigger many problems for all sorts of communications with the outside world (emails, file
sharing, etc.) and between programs internally.

Conclusion

Detailed results of the tests are available in the “Test Reports” section of this report.

Android

Most of the tested HTTP libraries are using the same base code, therefore the results are
quite similar except for Apache HTTPClient, which should not be used. Starting from Android
4.4, okHttp is used by Android to implement java.net.HttpUrlConnection but okHttp relies on
java.net.IDN which is IDNA2003 compliant only. Therefore, no library that uses the base
Android network stack would be IDNA2008 compliant.

As okHttp refuses to solve the problem, a solution on Android would be to replace
java.net.IDN in an IDNA2008 compliant way which is not the case. An IDNA2008 compliant
solution could be easily achieved as Android already contains and uses icu.text.IDNA that
offers that compliance.

The most used SMTP library on Android offers a good compliance with EAI, however, it
often makes more sense for Android developers to use email Intent and then delegate email
sending to an application selected by the user. Developers should be aware that by using
email Intent, they are relying on other applications’ compliance with EAI.

https://en.wikipedia.org/wiki/Unicode_in_Microsoft_Windows#UTF-8

Universal Acceptance - Report UASG037 // 21

Windows

As related in the previous phase 2 report, Microsoft supports IDNA2008 in its core .NET
Framework. Testing on the PHP cURL extension revealed that this support has not been
translated into their C API from "windows.h" and is the cause of the non-compliance
reported. Besides that, libraries are behaving as on Linux. Nevertheless, from a UA
standpoint, the "Beta" feature using UTF-8 on Windows could lead to subtle errors like the
one we encountered for passing non-ASCII parameters between programs.

iOS

Despite good compliance with EAI and IDNA2008 from native iOS apps like Mail or Safari,
Apple doesn't seem to provide libraries with the same level of acceptance for developers.
This is rather counterintuitive since one expects these libraries to power Safari or Mail.
Perhaps Apple takes care of this by always converting to an A-Label before using their
HTTP libraries. For email libraries, we found a workaround that goes through their Mail
native app, bypassing the standard way of popping an email composition modal (obsolete as
we noticed), and everything works fine from there.

Bug Reports

As described in the results, bugs have been reported and many got answered. In some
cases, we even provided patches by way of git pull requests. At the time of this report being
published, three were already merged upstream and one is pending.

We noticed some important elements regarding bug reports:

• The bug report has to be very clear and precise, follow the rules of the project, and

suggest appropriate ways to resolve the problem whenever possible.

o For example, in okHttp, there was already a bug report on IDNA2008

compliance but it was not clear enough and suggested a resolution that was

not appropriate, therefore it was immediately rejected.

• Watch and provide answers in the bug report.

o It is likely that the maintainers will ask questions related to the bug report. If

they get no answer then they will discard it.

• If possible, provide new code to solve the issue in the form of a patch in a pull

request.

o In many cases, the maintainers asked for a pull request anyway. Providing a

pull request immediately will increase the chances that the problem is solved

upstream.

o The previous elements are also relevant for pull requests.

Universal Acceptance - Report UASG037 // 22

Test Reports

Kotlin (.html)

PHP Linux (.html)

PHP Windows (.html)

Swift (.html)

Bug Reports

Bug reports for each of the non-compliant tested libraries are available here.

https://uasg.tech/wp-content/uploads/2022/02/Test-Report-Kotlin.html
https://uasg.tech/wp-content/uploads/2022/02/Test-Report-PHP-Linux.html
https://uasg.tech/wp-content/uploads/2022/02/Test-Report-PHP-Windows.html
https://uasg.tech/wp-content/uploads/2022/02/Test-Report-Swift.html
https://uasg.tech/wp-content/uploads/2022/02/Universal-Acceptance-Conformance-Testing-of-Libraries-and-Languages-universal-acceptance.html

	About Cofomo
	Executive Summary
	Introduction
	Methodology
	Datasets
	H_DNS
	H_ES (to check EAI)
	H_ID
	L_A2U
	L_U2A

	Results
	Discussion
	iOS - Swift - MessageUI (EAI)
	iOS - Swift - URLSession (IDNA2008)
	IOS - Swift - Alamofire (IDNA2008)
	IOS - Swift – IDNA-Cocoa (IDNA2008)
	PHP - cURL (IDNA2008)
	Windows
	Linux

	PHP - mail (EAI)
	Windows
	Linux

	PHP - emailValidator (EAI)
	Linux
	Windows

	PHP – Guzzle (IDNA2008)
	Linux
	Windows

	PHP – intl (IDNA2008)
	Linux
	Windows

	PHP – PHPMailer (EAI)
	Linux
	Windows

	PHP – Symfony (IDNA 2008, EAI)
	Windows
	Linux
	Http-client (IDNA 2008)
	Polyfill-intl-idn (IDN 2008)
	Mailer (EAI)

	Android - Introduction
	Android - Kotlin - okHttp (IDNA2008)
	Android - Kotlin - HttpUrlConnection (IDNA2008)
	Android - Kotlin - Retrofit (IDNA2008)
	Android - Kotlin - fuel (IDNA2008)
	Android - Kotlin - Volley (IDNA2008)
	Android - Kotlin - Apache HttpClient (IDNA2008)
	Android - Kotlin - Jakarta Mail (EAI)
	Android - Kotlin - Email Intent (EAI)

	A Note on Windows
	Conclusion
	Android
	Windows
	iOS
	Bug Reports

	Test Reports
	Kotlin (.html)
	PHP Linux (.html)
	PHP Windows (.html)
	Swift (.html)

	Bug Reports

