

UA-Ready Code Samples - Report UASG043

UA-Ready Code
Samples in Java,
Python, and
JavaScript

26 October 2022

Universal Acceptance - Report UASG043 // 2

TABLE OF CONTENTS

Introduction 3

Code Snippets Description 3

Note 3

Java 4

Commons Validator 4

Guava 6

ICU 7

Jakarta Mail 8

Python3 10

IDNA 10

Email Validator 11

smtplib 11

JavaScript 13

Idna-uts46 13

validator 15

nodemailer 15

Universal Acceptance - Report UASG043 // 3

Introduction

The objective of this report was to develop, test, and publish functional minimal running
prototypes to demonstrate Universal Acceptance (UA)-readiness in prioritized technology
stacks. This work can be used to demonstrate UA-readiness to developers and persuade
them to adopt UA-ready practices.

Depending on the libraries, the samples illustrate compliance with Internationalized Domain
Names in Application (IDNA 2008) or Email Address Internationalization (EAI).

The following languages and libraries are nominally used in the code samples. These code
samples can help achieve UA.

Call to action:
Please star the project on github: https://github.com/icann/ua-code-samples

Language Framework/Library Version EAI IDNA

Java

commons-validator 1.7 X X

guava 31.0.1-jre X

icu 70.1 X

jakartamail 2.0.1 X

Python

idna 3.3 X

email-validator 1.1.3 X

smtplib Python 3.10 X

Javascript

idna-uts46 1.1.0 X

validator 13.7.0 X

nodemailer 6.7.2 X

(For the UA-Readiness of programming language libraries across different platforms, see
UASG037)

Code Snippets Description

Note

Minimal viable products (MVPs) were developed for the following programming languages
using the libraries specified to provide example code and best practices for developers to

https://github.com/icann/universal-acceptance
https://github.com/icann/universal-acceptance
https://github.com/icann/ua-code-samples
https://uasg.tech/download/uasg-037-ua-readiness-of-some-programming-language-libraries-and-frameworks-en/

Universal Acceptance - Report UASG043 // 4

use in their own work. The MVP will demonstrate how to get UA-compliant results from

these libraries (see UASG018A) where possible.

When compliance cannot be achieved depending on the library and languages, the snippet
will explain the workaround and limitations encountered when writing UA-ready code
samples. Non-compliance can take multiple forms:

▪ Library using IDNA2003 deprecated protocol instead of IDNA2008.
▪ Library using a static list of TLD.
▪ Library not validating properly the SMTPUTF8 extension support.

One can exercise the code samples through a front end interface provided in the source
code (see https://github.com/icann/ua-code-samples/blob/master/readiness-sample-
code/ui/README.md):

Java

Commons Validator

Snippets

Commons validator provides multiple validators. For the following code samples, we focused
on domain validator, email validator, and URL validator.

Commons validator uses a static list of top-level domains (TLDs) that is shipped with the
sources, therefore, depending on the version of the library the TLD list can be obsolete. As
the list of TLDs is regularly updated, any static list will quickly become obsolete.

To mitigate this, the following snippet downloads the list of TLDs from the IANA website:
private static final String IANA_TLD_LIST_URL = "https://data.iana.org/TLD/tlds-alpha-by-domain.txt";

public static String[] retrieveTlds() {
 StringBuilder out = new StringBuilder();
 try (BufferedInputStream in = new BufferedInputStream(
 new URL(IANA_TLD_LIST_URL).openStream())) {
 byte[] dataBuffer = new byte[1024];
 int bytesRead;
 while ((bytesRead = in.read(dataBuffer, 0, 1024)) != -1) {
 out.append(new String(dataBuffer, 0, bytesRead));
 }

https://uasg.tech/wp-content/uploads/documents/UASG018A-en-digital.pdf
https://github.com/icann/ua-code-samples/blob/master/readiness-sample-code/ui/README.md
https://github.com/icann/ua-code-samples/blob/master/readiness-sample-code/ui/README.md
https://data.iana.org/TLD/tlds-alpha-by-domain.txt

Universal Acceptance - Report UASG043 // 5

 } catch (IOException e) {
 // handle exception
 }
 return Arrays.stream(out.toString().split("\n"))
 .filter(s -> !s.startsWith("#"))
 .map(String::toLowerCase).distinct().toArray(String[]::new);
}

This list can then be provided when creating a domain validator instance with:
List<Item> domains = new ArrayList<>();
domains.add(new Item(GENERIC_PLUS, retrieveTlds()));
DomainValidator validator = DomainValidator.getInstance(false, domains);

It is also possible to avoid managing the full list of TLDs and completely bypass the TLD
existing check by providing the TLD of the domain to be tested directly to the domain
validator with:
public static DomainValidator createDomainValidatorInstance(String domain) {
 String tld = domain;
 if (domain.contains(".")) {
 tld = domain.substring(domain.lastIndexOf(".") + 1);
 }

 // Convert TLD to A-Label
 int flags = IDNA.CHECK_BIDI
 | IDNA.CHECK_CONTEXTJ
 | IDNA.CHECK_CONTEXTO
 | IDNA.NONTRANSITIONAL_TO_ASCII
 | IDNA.USE_STD3_RULES;
 IDNA idna = IDNA.getUTS46Instance(flags);
 IDNA.Info info = new IDNA.Info();
 StringBuilder tldAscii = new StringBuilder();
 idna.nameToASCII(tld, tldAscii, info);
 // if there is an error, do nothing, validator will fail
 if (!info.hasErrors()) {
 return DomainValidator.getInstance(false,
 List.of(new Item(GENERIC_PLUS, new String[]{tldAscii.toString()}));
 }
 return DomainValidator.getInstance();
}

The domain validator is also used by other validators such as email validator, therefore, it
should also be instantiated with an accurate list of TLDs when creating other validator
instances.

Then, the domain validator can be used for validation:
public static boolean validate(String domain) {
 DomainValidator validator = DomainValidator.createDomainValidatorInstance(domain);
 return validator.isValid(domain);
}

In case a full URL needs to be validated, one can also use the URL validator:
public static boolean validateUrl(String url) {
 String domain;
 try {

Universal Acceptance - Report UASG043 // 6

 domain = new URL(url).getHost();
 } catch (MalformedURLException e) {
 return false;
 }
 UrlValidator urlValidator = new UrlValidator(null, null, 0L,
 createDomainValidatorInstance(domain));
 return urlValidator.isValid(url);
}

Similarly, UA-compliant email validation can be performed as follows:
public static boolean validateAddress(String email) {
 String domain = email.substring(email.lastIndexOf("@") + 1);
 EmailValidator validator = new EmailValidator(false, false,
 createDomainValidatorInstance(domain));
 return validator.isValid(email);
}

Notes for Commons-Validator in Java

The tested version (1.7) includes a way to create domain validator instances with a list of
TLDs to consider valid, which was not the case before. Former versions only allowed to
override the list before the domain validator instance creation, which would therefore make
the list become obsolete after a certain amount of time in long running applications.

The validation examples do not check if the TLD exists, but with the retrieveTlds method
above, one can easily provide an accurate list of TLDs to the validator. If the validator is
used repeatedly, the TLDs list should be cached and updated when necessary.

Bug Reports

Domain validator converts the domain to A-label with java.net.IDN that is only IDNA 2003
compliant:

▪ https://issues.apache.org/jira/browse/VALIDATOR-483

Guava

Snippets

Guava only performs some basic checks (label length, no ending dash, etc.) on domain
names and allows you to check whether the domain is in the public suffix list. Therefore, to
perform a real UA compliant domain validation, another validation method should be used
making Guava obsolete except for the public suffix list check.

To check if a domain is in the public suffix list with Guava, you can do the following:
public static boolean isInPublicSuffixList(String domain) {
 try {
 InternetDomainName internetDomainName = InternetDomainName.from(domain);
 return internetDomainName.hasPublicSuffix();
 } catch (IllegalArgumentException e) {
 // the domain is invalid, but a real UA compliant validation should have already been made before
 }
}

https://issues.apache.org/jira/browse/VALIDATOR-483
https://publicsuffix.org/

Universal Acceptance - Report UASG043 // 7

Notes for Guava in Java

Guava does not bring benefits for UA-ready domain name validation. If one wants to use the
public suffix list it can be of interest, but this list may not always be up to date with the latest
TLDs and should only be used for extremely specific use cases.

Bug Reports

We intended to report a bug for IDNA 2008 support but when searching for existing bug
reports, we noticed that Guava maintainers do not want to depend on third-party libraries,
and they recommend doing the conversion with such libraries before using it in Guava. See
https://github.com/google/guava/issues/5808#issuecomment-987099900.

We then submitted a pull request to improve their documentation on IDNs that is misleading:
https://github.com/google/guava/pull/5929

ICU

Snippets

ICU can be used to convert domains to A-label prior to using it on wire. This would mitigate
the risk induced by other libraries which may have a poor UA compliance level.

To be fully compliant with IDNA 2008, some flags must be provided when creating the
instance:
private static final IDNA idnaInstance = IDNA.getUTS46Instance(IDNA.NONTRANSITIONAL_TO_ASCII
 | IDNA.CHECK_BIDI
 | IDNA.CHECK_CONTEXTJ
 | IDNA.CHECK_CONTEXTO
 | IDNA.USE_STD3_RULES);

Then, the instance can be used to convert a domain name to A-label:
public static Optional<String> toALabel(String domain) {
 StringBuilder output = new StringBuilder();
 IDNA.Info info = new IDNA.Info();

 idnaInstance.nameToASCII(domain, output, info);

 String domainALabel = output.toString();
 if (!info.hasErrors()) {
 return Optional.of(domainALabel);
 } else {
 // you can retrieve the errors with info.getErrors()
 return Optional.empty();
 }
}

Notes for ICU in Java

As ICU performs validation as well as conversion from/to A-label, it should also be used for
domain name validation.

https://github.com/google/guava/issues/5808#issuecomment-987099900
https://github.com/google/guava/pull/5929

Universal Acceptance - Report UASG043 // 8

Bug Reports

ICU performs some normalization on domains and therefore, some invalid characters as per
IDNA 2008 but valid as per UTS46, are considered valid:

▪ https://unicode-org.atlassian.net/browse/ICU-21922

Jakarta Mail

Snippets

Jakarta mail offers compliance with EAI but some valid Unicode characters as per IDNA
2008 are rejected. Moreover, the domain part needs to be NFC normalized before being
provided to it. As software may need to store and query those email addresses, it is good
practice to perform normalization of the whole address prior to any other use.

To normalize the domain part, the following can be done:
String localPart = compliantTo.substring(0, emailAddress.lastIndexOf("@") - 1);
String domain = compliantTo.substring(emailAddress .lastIndexOf("@") + 1);
// Email address with domain normalized
emailAddress = localPart + "@" + Normalizer.normalize(domain, Normalizer.Form.NFC);

Then, to mitigate the risk of rejecting valid email addresses when Jakarta mail considers an
address as invalid, another library can be used to check whether the domain is valid and if
so, the domain should be converted to A-label to avoid being rejected by Jakarta mail:
try {
 InternetAddress internetAddress = new InternetAddress(emailAddress, false);
 internetAddress.validate();
} catch (Exception e) {
 // Email address is still rejected, convert domain to A-label
 emailAddress = convertDomainToAlabel(compliantTo).orElseThrow(() -> e);
}

ICU that is fully compliant with UA can do both steps, thus, the conversion to A-label method
can be for instance:
private static Optional<String> convertDomainToAlabel(String emailAddress) {
 String localPart = emailAddress.substring(0, emailAddress.lastIndexOf("@") - 1);
 String domain = emailAddress.substring(emailAddress.lastIndexOf("@") + 1);

 IDNA idnaInstance = IDNA.getUTS46Instance(IDNA.NONTRANSITIONAL_TO_ASCII
 | IDNA.CHECK_BIDI
 | IDNA.CHECK_CONTEXTJ
 | IDNA.CHECK_CONTEXTO
 | IDNA.USE_STD3_RULES);

 StringBuilder output = new StringBuilder();
 IDNA.Info info = new IDNA.Info();

 idnaInstance.nameToASCII(domain, output, info);

 String domainALabel = output.toString();
 if (!info.hasErrors()) {
 String converted = localPart + "@" + domainALabel;
 return Optional.of(converted);
 } else {

https://unicode-org.atlassian.net/browse/ICU-21922

Universal Acceptance - Report UASG043 // 9

 return Optional.empty();
 }
}

Note: Conversion to A-label is not always performed independently of Jakarta mail validation
results as it allows keeping the email address as closest as possible to the user input.

After those steps, the email address is considered valid by Jakarta mail (providing that the
email address is indeed valid). Then, we can configure and create a mail session with:

Properties props = System.getProperties();

props.put("mail.smtp.host", host);

props.put("mail.smtp.port", port);

// add any other configuration for the SMTP server

// enable UTF-8 support, mandatory for EAI support

props.put("mail.mime.allowutf8", true);

Session session = Session.getInstance(props, null);

The configuration flag allowutf8 is particularly important here as it will enable EAI support in
Jakarta mail.

Before sending the message, the SMTP server should be queried to ensure its support for
the SMTPUTF8 option. Indeed, Jakarta mail detects when the server does not support the
option and displays a warning in the logs but still sends the message. When the server does
not support the options, downgrading measures should be performed.

The snippet below describes how to query the server to check for the SMTPUTF8
compliance and if not supported, converts the domain part of the email address to A-label if
the local-part is ASCII only, or else sends an error:
try (Transport transport = session.getTransport()) {
 transport.connect(host, port, null, null); // add credentials if needed

 if (transport instanceof SMTPTransport &&
 !((SMTPTransport) transport).supportsExtension("SMTPUTF8")) {
 // server does not support SMTPUTF8 extension, convert domain to A-label as a downgrading
 // measure
 // first check the local-part is ASCII-only
 String localPart = compliantTo.substring(0, compliantTo.lastIndexOf("@") - 1);
 if (!CharMatcher.ascii().matchesAllOf(localPart)) {
 // local-part contains non-ASCII characters
 return; // stop here as email will likely be rejected if kept as-is
 }
 // domain conversion should not fail as domain is already validated
 emailAddress = convertDomainToAlabel(emailAddress).orElseThrow(/* should not happen */);
 }
} catch (MessagingException e) {
 // failed to query the server
}

Universal Acceptance - Report UASG043 // 10

Now that the email address has been validated and the server will be able to handle it, the
message can be built and sent. The message is built with a proper header, to correctly
handle character encoding for internationalized email:
try {
 MimeMessage msg = new MimeMessage(session);
 //set message headers for internationalized content
 msg.addHeader("Content-type", "text/HTML; charset=UTF-8");
 msg.addHeader("Content-Transfer-Encoding", "8bit");
 msg.addHeader("format", "flowed");

 msg.setFrom(new InternetAddress(sender));
 msg.setSubject(subject, "UTF-8");
 msg.setText(content, "UTF-8");
 msg.setSentDate(new Date());
 msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse(emailAddress, false));
 Transport.send(msg);
} catch (MessagingException e) {
 // failed to send the email
}

Bug Reports

A bug report is already opened for valid domains rejected by Jakarta mail:

▪ https://github.com/eclipse-ee4j/mail/issues/589

Python3

IDNA

Snippets

IDNA is a Python library that implements IDNA 2008. Therefore, it can be used to convert
the domain to A-label before using other libraries to make HTTP, DNS, or other requests
related to the domain name, for instance.

IDNA does not perform any normalization before converting the domain. For IDNA 2008, the
domain should be normalized in NFC form (RFC 5891 § 4.1) using Python Unicode module,
as below:
domain_normalized = unicodedata.normalize('NFC', domain)

If this conversion is not performed, IDNA will reject it.

Then the domain can be manipulated with the IDNA library. The snippet below converts the
domain to A-label. When the domain is not valid, the idna.IDNAError exception should be
catch:
try:
 domain_a_label = idna.encode(domain_normalized).decode('ascii')
 logger.info(f"Domain '{domain}' converted in A-Label is '{domain_a_label}'")
 return domain_a_label
except idna.IDNAError as e:
 # The label is invalid as per IDNA 2008
 logger.error(f"Domain '{domain}' is invalid: {e}")

https://github.com/eclipse-ee4j/mail/issues/589
https://www.rfc-editor.org/rfc/rfc5891#section-4.1

Universal Acceptance - Report UASG043 // 11

The snippet above describes one way to convert a domain name to A-label, the library offers
other ways that are documented in its documentation.

Notes for IDNA in Python3

The Python IDNA package is widely used and fully IDNA 2008 compliant. There is an
ongoing discussion to make it a replacement to the Python IDN module that implements
IDNA 2003. It can also be used to validate domain names.

Bug Reports

No bug has been reported.

Email Validator

Snippets

Email validator performs common email addresses validation. That means that some valid
email addresses per RFCs may be rejected, but only for edge cases (like quoted local part
with a “@” in it: "i@fo"@ua-test.link, "fußb@ll"@ua-test.link).

EAI, however, is correctly supported and internationalized domain names validation is
performed with the IDNA library.

The snippet below describes the way the library can be used to validate an email address. If
the address is invalid, an exception is raised and should be caught.
try:
 validate_email(address, check_deliverability=False)
 logger.info(f"'{address}' is a valid email address")
 return True
except EmailNotValidError as e:
 logger.error(f"'{address}' is not a valid email address: {e}")
 return False

Notes for Email-validator for Python3

validate_email method contains an option to make DNS queries to ensure that the email
address domain exists. Depending on the volume of email addresses to validate, it can be
interesting to enable it. The method also returns an object with accessors on some email
address properties such as local-part, domain, a normalized form, and the email with domain
converted to A-label, which can be especially useful when the email address needs to be
used afterwards.

As stated above, the email validation is not fully compliant with RFCs. For instance, it does
not accept quoted local part which should be permitted. RFC 5321 recommends against
using quoted string to ensure email deliverance, so the choice of the developers respects
the RFC recommendations, which makes it acceptable.

smtplib

Snippets

smtplib can be used to send EAI-compliant emails. It makes a partial validation of the email
address (e.g., it does not validate the domain compliance with IDNA 2008) therefore another

mailto:%22i@fo%22@ua-test.link
mailto:%22fußb@ll%22@ua-test.link

Universal Acceptance - Report UASG043 // 12

validation method should be used before trying to send an email, for instance using the
email-validator library.

smtplib should be correctly used to set the relevant options for internationalized emails.
Multiple methods exist to send emails; sendmail would need the charset and relevant
options to be set manually while send_message would do this automatically, therefore
send_message is used in the following snippet.
try:
 # create the smtp instance
 smtp = smtplib.SMTP(host, port)
 # set debug level to true if you want to see all messages sent to and received from
 # the server
 smtp.set_debuglevel(False)
 # build the email message
 msg = EmailMessage()
 msg.set_content(content)
 msg['Subject'] = subject
 msg['From'] = sender

 # send the email
 smtp.send_message(msg, sender, to)
 smtp.quit()
 logger.info(f"Email sent to '{to}'")
except smtplib.SMTPNotSupportedError:
 # The server does not support the SMTPUTF8 option, you may want to perform downgrading
 logger.warning(f"The SMTP server {host}:{port} does not support the SMTPUTF8 option")
 raise

Exceptions should be correctly caught to check for any error when sending the message. In
the snippet, we catch the smtplib.SMTPNotSupportedError as it is raised when the server
does not support the SMTPUTF8 option.

In such cases, downgrading can be performed. An example of downgrading is the
conversion of the domain to A-label in case the local-part is ASCII-only. If using email
validator, the library directly provides the email address with the domain converted to A-
label, or else the snippet below can be used:
def email_to_ascii(email):
 local_part, domain = email.rsplit('@', 1)
 if not local_part.isascii():
 logger.error(f"Email local part '{email}' contains Unicode characters, "
 f"cannot transform it to full ASCII")
 return

 normalized = unicodedata.normalize('NFC', domain)
 try:
 converted = idna.encode(normalized).decode('ascii')
 except idna.IDNAError as e:
 logger.error(f"Email domain '{domain}' is not valid against IDNA 2008: {e}")
 return

 return '@'.join((local_part, converted))

Universal Acceptance - Report UASG043 // 13

Notes for smtplib in Python3

From the Python documentation, smtplib module supports SMTPUTF8 flag since Python
3.5.

JavaScript

Idna-uts46

Snippets

Idna-uts46 accepts a few options depending on which protocol (IDNA2003, IDNA2008) one
wants and how strict one wants to be. Idna-uts46 only does domain conversion and does not
support URL.

Server-side (NodeJS)

If we are server-side (JavaScript with the NodeJS engine), we can use the URL native object
from NodeJS to extract the domain since it is IDNA2008 compliant:
function idna_convert(website, results) {
 let url = undefined;
 try {
 url = new URL(website);
 } catch (err) {
 return results.addResult(
 true,
 `[nodejs] parsing URL ${website} failed: ${err?.message}`,
 website);
 }

 // if node automatically converted the url (when compiled with ICU), convert it back
 // since it doesn't use the proper ICU flags,
 // see:
https://github.com/nodejs/node/blob/97826d3d8321f4dd86f2973fa6838101d14e8082/src/node_i18n.cc#L61
2
 // where USE_STD3_RULES is missing in default mode
 const domain = domainToUnicode(url.hostname);
 url.hostname = domain;
 results.addResult(
 false,
 `[nodejs] successfully parsed the domain ${domain} from URL ${website}`,
 url.toString());
 const domain_normalized = domain.normalize('NFC');
 url.hostname = domain_normalized;
 if (!website.includes(domain_normalized)) {
 results.addResult(false, `[nodejs] Website domain has been normalized in NFC form:
${domain_normalized}`, url.toString())
 }
 try {
 const domain_ascii = idna.toAscii(domain_normalized, {transitional: false, useStd3ASCII: true,
verifyDnsLength: true});
 url.hostname = domain_ascii;
 if (domain_ascii !== domain_normalized) {
 results.addResult(
 false,

Universal Acceptance - Report UASG043 // 14

 `[idna-uts46] The website domain name has been transformed to A-Label to ensure IDNA 2008
compliant queries: ${domain_ascii}`,
 url.toString());
 }
 return results.addResult(false, `[idna-uts46] ${website} is a valid URL`, url.toString());
 } catch (err) {
 return results.addResult(
 true,
 `[idna-uts46] URL ${website} is invalid: ${err?.message}`,
 website);
 }
}

Unfortunately, NodeJS URL does not use STD3 Rule and thus accepts many illegal ASCII
characters in the LDH (letters, digits, hyphens) domain, like "+" or "_" for instances. In
addition to that, IDNA2008 “DISALLOWED” characters are completely ignored. If it were not
the case, one would only need this URL object to convert a U-label to an A-label, this would
be much simpler.

Because of that, after extracting the domain from the URL, the domain must be converted
(again) with the proper options sent to the idna-uts46 lib:
const domain_ascii = idna.toAscii(domain_normalized, {
 transitional: false,
 useStd3ASCII: true,
 verifyDnsLength: true});

▪ Transitional=false ensures we are on the IDNA2008 protocol
▪ useStd3ASCII=true ensures we allow only LDH domains
▪ verifyDnsLength=true ensures we do not allow a domain label to exceed 63

characters

Client-side (browser JavaScript engine)

The implementation of the URL object used above in many browsers, use IDNA2003. Thus,
we must slightly modify the code above and use an RFC compliant library like “uri-js” to
extract the domain from the URL:
let url = undefined;

try {
 url = URI.parse(website, {unicodeSupport: true});
} catch (err: any) {
 console.log(`[uri-js] parsing URL ${website} failed: ${err?.message}`);
 return {
 invalidUrl: true
 };
}
const domain = url.host;
console.log(`[uri-js] successfully parsed the domain ${domain} from URL ${website}`)
try {
 const domain_ascii = idna.toAscii(domain, {
 transitional: false,
 useStd3ASCII: true,
 verifyDnsLength: true
 });
 if (domain !== domain_ascii) {

https://unicode.org/reports/tr46/#STD3_Rules

Universal Acceptance - Report UASG043 // 15

 console.log(`[idna-uts46] successfully convert ${domain} to ascii ${domain_ascii}`);
 }
 return null;
} catch (err) {
 return {
 invalidUrl: true
 }
}
return null;

Notes for Idna-uts46 in Javascript

The client-side version can be also used server-side.

Bug Reports

▪ https://github.com/nodejs/node/issues/41976
▪ https://github.com/nodejs/node/issues/41977

validator

Snippets

Validator.js provides a simple API (isEmail function) that is EAI-compliant (see this
compliance benchmark: https://uasg.tech/download/uasg-018a-test-results-en/ under
Javascript):
function eai_validate(email, results) {
 if (!validator.isEmail(email)) {
 return results.addResult(true, `[validator] Email address ${email} is invalid`, email);
 }
 return results.addResult(false, `[validator] Email address ${email} is valid (no DNS verifications)`,
email);
}

Notes for validator in Javascript

Validator.js can be used as-is server-side and client-side.

nodemailer

Snippets

Nodemailer is a smtp client for sending email in server-side JavaScript. Nodemailer
automatically transforms the domain part into an A-label when needed and checks the
SMTPUTF8 extension. However, and surprisingly, it does not raise an exception when we
send an email with non-ASCII characters in the local part to a SMTP server not supporting
the SMTPUTF8 extension. This snippet manually checks with the custom
“support_SMTPUTF8” function the support of the extension:
const SMTPConnection = require("nodemailer/lib/smtp-connection");

class SmtpClient {
 constructor(nodemailer_transport) {
 this.client = nodemailer_transport;
 }

https://github.com/nodejs/node/issues/41976
https://github.com/nodejs/node/issues/41977
https://uasg.tech/download/uasg-018a-test-results-en/

Universal Acceptance - Report UASG043 // 16

 async support_SMTPUTF8() {
 let connection = new SMTPConnection(this.client.options);
 return new Promise(contains_SMTPUTF8 => {
 connection.connect(() => {
 // wrapper to access _supportedExtensions. Since the maintainers did not
 // make it public API, we cannot guarantee this name won't change in future
 // versions of nodemailer
 contains_SMTPUTF8(connection['_supportedExtensions'].includes('SMTPUTF8'));
 connection.close();
 });
 });
 }
}
async function eai_smtp(email, smtp_client, results, msg) {
 if (!email.includes('@') || !email.substring(email.lastIndexOf('@') + 1).includes('.')) {
 return results.addResult(true, "[sample] email does not contains the '@' AND '.' characters in
this order", email);
 }
 const localpart = email.substring(0, email.lastIndexOf('@'));
 const is_localpart_non_ascii = /[\u0080-\uFFFF]/.test(localpart);
 // we don't need to check the domain part, since it will be converted into a A-LABEL automatically
by nodemailer
 if (is_localpart_non_ascii && !await smtp_client.support_SMTPUTF8()) {
 return results.addResult(true, '[Note] SMTP server does not support SMTPUTF8', email);
 }
 try {
 await smtp_client.client.sendMail({
 from: "ua@test.org",
 to: email,
 subject: "Registration successful",
 text: msg
 });
 } catch (err) {
 return results.addResult(true,`[nodemailer] Failed to send email: ${err.message}`, email);
 }
 return results.addResult(false,`[nodemailer] Email has been sent successfully. See it here!`, email);
}

Bug Reports

▪ https://github.com/nodemailer/nodemailer/issues/1378

https://github.com/nodemailer/nodemailer/issues/1378

	Introduction
	Code Snippets Description
	Note
	 Library using IDNA2003 deprecated protocol instead of IDNA2008.
	 Library using a static list of TLD.
	 Library not validating properly the SMTPUTF8 extension support.

	Java
	Commons Validator
	Snippets
	Notes for Commons-Validator in Java
	Bug Reports
	 https://issues.apache.org/jira/browse/VALIDATOR-483

	Guava
	Snippets
	Notes for Guava in Java
	Bug Reports

	ICU
	Snippets
	Notes for ICU in Java
	Bug Reports
	 https://unicode-org.atlassian.net/browse/ICU-21922

	Jakarta Mail
	Snippets
	Bug Reports
	 https://github.com/eclipse-ee4j/mail/issues/589

	Python3
	IDNA
	Snippets
	Notes for IDNA in Python3
	Bug Reports

	Email Validator
	Snippets
	Notes for Email-validator for Python3

	smtplib
	Snippets
	Notes for smtplib in Python3

	JavaScript
	Idna-uts46
	Snippets
	 Transitional=false ensures we are on the IDNA2008 protocol
	 useStd3ASCII=true ensures we allow only LDH domains
	 verifyDnsLength=true ensures we do not allow a domain label to exceed 63 characters

	Notes for Idna-uts46 in Javascript
	Bug Reports
	 https://github.com/nodejs/node/issues/41976
	 https://github.com/nodejs/node/issues/41977

	validator
	Snippets
	Notes for validator in Javascript

	nodemailer
	Snippets
	Bug Reports
	 https://github.com/nodemailer/nodemailer/issues/1378

