
Universal Acceptance - Report UASG046

Ç√

UA Remediation
for Top Global
Websites

May 2023

 2

TABLE OF CONTENTS

About EVARIS 3

Introduction 3

Executive Summary 4

UA Remediation Methodology 4

Contact Database Creation 5

Campaign Initiation and Status 6

UA Implementation of 22 Websites 9

Contact Form 7 Plugin-Related Issues 11

Overall Challenges in Implementation 12

UA Implementation Challenges Faced with IT and Non-IT Organizations 13

Observations 14

Annexure - I 18

Annexure - II 20

Annexure - III 33

 3

About EVARIS

EVARIS Systems LLP – An Evolutionary Artificial Intelligence Solutions and Systems LLP –

is based in India. It features a team with experience in the field of ICT Solutions including

quality assurances, and more specifically, Internationalized Domain Names (IDNs) and

email addresses.

The EVARIS Systems LLP team members have experience in the field of Indian language

computing, natural language processing, including LTR, RTL scripts/languages, and

formulation of IDN policy in close coordination with the Ministry of Government for Indian

languages. Activities also include work on variant generation, homographic for identifying

confusingly similar characters, reserved list and finally implementation by registries by way

of APIs.

Introduction

The goal of Universal Acceptance (UA) is to ensure that every valid domain name and email

address can be used correctly and consistently by all Internet-enabled applications, devices,

and systems, regardless of script or length. This includes both new generic top-level

domains (gTLDs) and Internationalized Domain Names (IDNs), and Email Address

Internationalization (EAI). While it may be assumed that these work in the same manner as

legacy TLDs, that is not the case and problems with acceptance are very common.

As an example, the goal is that an email such as web-test@ሁለንአቀፍ-ተቀባይነት-ሙከራ.com or

الشامل.موريتانيا-القبول-الويب@تجربة-تجربة should have the same rate of acceptance as test@ua-

test19.com.

This evaluation was commissioned by the Universal Acceptance Steering Group (UASG)

under the Statement of Work (SOW) "Pilot Project for Large-Scale UA Remediation

Campaign (EAI Support of Global Websites)".

https://community.icann.org/display/TUA/UA+Statements+of+Work?preview=/126421223/164627529/SOW%20-%20UA%20remediation%20-%20EAI%20support%20of%20the%20top%202000%20global%20websites%20-%20Final%2012May2021.pdf
https://community.icann.org/display/TUA/UA+Statements+of+Work?preview=/126421223/164627529/SOW%20-%20UA%20remediation%20-%20EAI%20support%20of%20the%20top%202000%20global%20websites%20-%20Final%2012May2021.pdf

 4

Executive Summary

The Universal Acceptance Steering Group (UASG) anticipates a need to conduct large-scale

remediation campaigns, develop a prototype process for such UA remediation campaigns,

gain experience with the process, and learn lessons about the remediation process. The

UASG chose to use the results from its EAI testing of the top 2,000 global websites in its

remediation efforts.

The UASG025 report, "Global Evaluation of Websites for Acceptance of E-mail Addresses in

2019", was a follow-up to a similar test done in 2017. It was part of a broader initiative to

further the community’s understanding of the bottlenecks and key issues surrounding

widespread compatibility of all domain names currently available. The 2017 and 2019

surveys tested the 1,000 most popular global websites and provided an informative global

overview of UA-readiness.

The UASG027 report, "Country-Based Evaluation of Websites for Acceptance of Email

Addresses in 2020", was a follow-up to testing done in 2017 and 2019. The testing done in

UASG027 ascertained the acceptance rates of email addresses by websites in different

countries. To do this, approximately 50 popular websites in 20 different countries were

tested and compared for UA-readiness.

A total of 2,010 websites were tested after merging the websites tested in UASG025 and
UASG027, and additional 380 global websites determined by using Alexa Top Global
Websites API. The result of testing for EAI acceptance of these 2,010 websites is published
in the UASG039 report.

This report, UASG046, focuses on the outcomes of remediation activities as well as the UA

remediation process undertaken to make websites UA-ready. It included:

● Understanding the platform and technology stack used while developing the
websites.

● Possible changes for making the website UA-ready.

● Suggesting the changes along with suitable pseudo code and use of requisite library.

UA Remediation Methodology

● Contact the website owners or webmasters to report the issue(s) identified.

● Since the campaigns did not result in positive responses, we started working on a

strategy for more engagement with the website authorities and developers.

● Initiated one to one communication with the organizations who have attended

awareness/remediation online workshops conducted by the EVARIS team and have

shown interest in UA implementation. More than 26 online and offline

awareness/remediation workshops and coding sessions were conducted which has

resulted in responses from 56 organizations for possible UA implementation.

Organizational-level talks were initiated and carried out for UA awareness and

compliance. This also resulted in organizations showing interest in UA.

● With the remediation efforts of the EVARIS team, 22 out of 56 websites became UA-

ready.

https://uasg.tech/download/uasg-025-global-evaluation-of-websites-for-acceptance-of-e-mail-addresses-in-2019-en/
https://uasg.tech/download/uasg-027-country-based-evaluation-of-websites-for-acceptance-of-email-addresses-in-2020-en/

 5

Contact Database Creation

It was a challenge to get the contact email IDs of the web authorities, webmasters, and web-

admins to establish communication and provide possible remediation. For this report, email

IDs were extracted from publicly available information. The same were validated to ensure

positive delivery of the initial communication email.

Creation of a database of contact email IDs for 2,010 websites.

● Email IDs extraction

● Email verification

Email ID Extraction and Verification Activity

The following methodology was used to get relevant contact email IDs of the 2,010 websites.

1. Two different third-party services were used to extract contact email IDs.

2. For the websites where emails were not extracted from the first service provider, the

same were subjected to extraction through the second third-party provider.

3. Through this exercise, a total of 20,000-plus emails were extracted.

4. These emails were subject to a round of verification and validation with the tools

provided by the service provider.

5. Found unique mailboxes along with their occurrences for these verified email IDs.

6. Made clusters of similar mailboxes and priority given to clusters as well as mailboxes

within the cluster. If no email found from top priority clusters, then available singular

email ID was allocated having priority 9999.

7. The main idea behind this was to pull out relevant emails to get positive responses.

As an example, webmaster and customer-support were given more priority than

press or abuse.

8. Minimum of one to maximum of three email IDs per website were identified.

9. Validated and relevant email IDs for 1,800-plus websites were obtained.

10. For around 790 websites where valid email IDs were not found through both the

software, the same were subjected to manual extraction. These manually extracted

email IDs were also included in the clusters.

 6

11. For the remaining 180 websites, the following activities were undertaken:

a. By filling the registration/contact form on the website to establish further email

communication.

b. Identifying the technical head/CEO/founder's name with Google search,

Wikipedia, or on websites. Identifying LinkedIn profile and establishing

communication through LinkedIn or direct email.

c. Using online paid services for identifying the email IDs using the name of the

technical head, CEO, or founder.

d. Identifying the Twitter handle of the website and seeking the relevant

person’s contact email ID.

e. Wherever available, online chat also led to getting contact details.

12. As per the GDPR policy and advice from the UASG, personal emails were removed

from the contact database. Completed online available forms (e.g., registration,

subscription, feedback, support) and others on the websites manually to

communicate with them.

Domain Authentication

We leveraged the services of Mailchimp and snoiv.io for running and tracking the

campaigns. For sending bulk emails, domain authentication was undertaken with the help of

the UASG team, which also ensured that the emails reached recipient’s inbox. Domain

authentication helps maintain and grow an engaged audience.

Campaign Initiation and Status

As per the SOW, to touch base with the website authorities and web developers, various

email campaigns were carried out with the extracted emails for 2,000-plus websites. There

were hardly any responses from the organizations.

It was observed that the mail delivery rate was around 85% and open rate was 60%, which

was encouraging. However, it was also observed that 25% were automatic responses out of

the 60% open rate. The rest of the responses were related to ticket generation, advice to

generate a ticket, or redirection.

Campaign -1 (with email -1 IDs) – Initiated on 24 April 2022 with first draft of email. Total

2,010 websites with 1,925 email IDs, and 1,758 total recipients with around 30% open rate

and 10% click rate.

Campaign -2 (with email -2 & 3 IDs) - Initiated on 2 August 2022 with first draft of email.

1,791 emails were sent with a 53% open rate and 18% click rate.

Campaign - 3 (Indian language community) - Initiated on 8 August 2022 with the first draft

of email. Total of 492 emails delivered with over 50% open rate. This was in addition to the

2010 websites, since responses from campaign-1 and campaign-2 were not that

encouraging and we thought of touch basing known entities.

Campaign - 4 (with email-1 IDs) - Initiated on 2 September 2022 with second draft of email.

Total of 1,040 emails sent with 39% open rate and 15% click rate.

 7

Campaign - 5 (with email-1 IDs) - Initiated on 15 September 2022 for 140 mails re-

campaigning.

Campaign – Overall status:

- Delivery Rate: 85%

- Open Rate: 60%

- Link click rate: 35%

- Automated Responses: 25%

- Manual response: 0.4%

Country Distribution of Websites Under UASG039 Testing

We were able to find out country details for 1,796 of the 2,010 websites that were

undertaken for testing. The table below shows the breakdown of the 1,796 websites by

country.

SN Country
Website
count

Percentage
out of 1,796

1 USA 420 23%

2 China 98 5%

3 India 95 5%

4 Russia 87 5%

5 Japan 75 4%

6 Turkey 66 4%

7 Kuwait 61 3%

8 Korea 49 3%

9 Spain 48 3%

10 Sweden 48 3%

11 Mexico 45 3%

12 Argentina 43 2%

13 Israel 43 2%

14 Brazil 42 2%

15 France 42 2%

16 Egypt 41 2%

17 Germany 40 2%

18 UK 37 2%

19 Ghana 34 2%

20 Kenya 34 2%

21 Canada 24 1%

22 Deutschland 24 1%

23 Indonesia 21 1%

24 Italy 20 1%

 8

Campaign Status Automation

MailChimp provides a status of the campaign on login as well as through APIs. Different

APIs provided by MailChimp for status of the email (i.e., delivered, read, bounced, clicked

and others) were used and the final status was prepared in the form of .csv files which are

being used for dashboard updates on a regular basis.

UA-Readiness Status of Websites

We conducted several UA awareness and remediation workshops. 56 organizations have
shown interest for UA implementation.

 Number Status

Unable to proceed
further

19 − Website developers backed out from implementation
without citing any reason

Unable to evaluate 7 − Problem while sending the form.
− Email field not found.
− Email field not available, however only Google form

was available.
− Provided Facebook URL instead of website.

Unable to implement
fully

8 Contact form 7 plugin related issues

UA-ready 22 Result of remediation efforts undertaken by project team
(refer to the Annexure - II for details)

TOTAL 56

 9

UA Implementation of 22 Websites

Out of 56 websites, 22 websites were made UA-ready, of which, 10 of the sites were

developed in PHP and Laravel and 2 were developed in PHP. PHP-based remediation was

recommended by the EVARIS team and implemented by the websites.

A further 5 websites were designed in HTML Bootstrap and 4 websites were in WordPress.

For these HTML Bootstrap and WordPress sites, we recommended a JS-based solution. For

the Technology Development for Indian Languages (TDIL) website, a JS-based solution was

implemented.

For JavaScript-based solutions, we referred to the JavaScript library for conversion of

Unicode to Punycode. Code snippets for the PHP-based solution is available in Annexure III:

UA Compliance Sample Code for PHP.

HTML5’s Email Input Type Observations

Out of the 22 websites, 19 websites used HTML input element attribute as email, while 3

websites used input element type attribute as text.

While designing forms in the websites for capturing user details including email IDs, the

HTML5’s "email" input type allows the collection of properly formatted ASCII-only email

addresses.

The input type “email” makes web development easier since the ASCII email validation work

is done by the browser. However, the browser's built-in email validation may vary slightly

across different browsers and versions, and it is recommended to perform additional server-

side validation to ensure the entered email is truly valid and associated with a real user

account. The HTML5 input type “email” allows validation of ASCII emails only and does not

support emails with Unicode characters in the input.

Since 19 websites have used input type “email” for collecting email from user, these

websites failed to accept IDN emails, while 3 websites used "text" input type, which allows

Unicode characters in the input, but does not validate the ASCII as well as EAI email

addresses.

HTML Input Element Attribute

 10

Overall Feedback from Implementors

Feedback was obtained from all of the 22 UA-ready websites about their experiences in
implementing UA by sharing a standard template titled "Universal Acceptance Case Study
Questions and Thought Starters", as provided by the UASG team.

As can be seen from the feedback, all 22 websites felt that implementing UA is beneficial for
their business growth. Also, after making websites UA-ready they now can allow EAI in
email field and avoid "invalid email format."

None of the websites encountered any surprises while implementing UA. This was because
of online coding sessions as well as continuous support provided by the project team. This
indicates that rigorous assistance is required during UA implementation.

Around 8 websites faced issues (mostly related to obtaining permissions) while
implementing, which resulted in taking more time to implement. However, they were made
UA-ready with continuous follow-up and persuasion.

Around 20 websites felt that implementing UA will be useful for increasing outreach to
people in the future, while 9 websites felt that it will be useful to acquire more customers.

In summary, continuous assistance is required technically with the implementation team,
while continuing to persuade and follow up with decision makers.

0

5

10

15

20

25

N
u

m
b

er
 o

f
w

eb
si

te
s

Parameters

Feedback from 22 Sites that Became UA-Ready

 11

Contact Form 7 Plugin-Related Issues

Out of 56 websites, 8 websites made use of a third-party WordPress plugin, namely "Contact

Form -7". We tried to have a workaround for the same but did not yield the desired results.

The following are our observations with implementing IDNA library in contact form 7 or other

contact forms in WordPress.

● Plugin provider implements the server-side validation. In case we override the client-
side validation using our UI API and validate, then also, after validation contact form
plugin sends data to the server.

● After receiving the data at server side, WordPress plugin again validates the data at
server side as per server-side implementation.

● Developer is not permitted to change the server-side code because of copyright
issues, security issues where in source code is now allowed to change.

In cases where hosting companies rely on readymade/free plugins, they have two issues:

one they do not have requisite knowledge of enhancing the plugin, and two, they are not

allowed to make the changes because of copyright and security issues.

In such cases, we need to approach the plugin owner/developer for to educate them about

the need for a UA compliance plugin.

 12

Overall Challenges in Implementation

● It takes time to get permissions from the client or website owner for the changes to
be done on their website.

● Since certain tasks are allocated to specific developer(s), availability of these
developers is also a challenge. Takes time to get developers time to implement.

● Since developers do not have much knowledge about Universal Acceptance and
EAI, it took several calls and meetings to explain it to them and also walk through the
implementation details including pseudo code and procedure.

● It was time consuming to take necessary permissions and developers’ availability
(window period for implementation) since UA implementation was not a priority.

● Daily follow ups were required with respective parties through WhatsApp messages,
email, and voice calls.

The following is the broad level of challenges faced in a typical IT organization and non-IT

organization setup, and some of the IT organizations leverage third-party services for

website development, hosting, and maintenance. It was observed that different departments

within an organization leverage internal, third-party or both services, specifically, HR,

finance, marketing, and pre-sales/post sales systems. In some cases, organizations that

have a global presence use regional development teams, resources, and frameworks. In

such cases unless the decision to implement UA is made globally, regional websites shy

away from implementation.

A Typical IT Organization Setup

 13

A Typical Non-IT Organization Setup

UA Implementation Challenges Faced with IT and Non-IT
Organizations

1. At first instance, website owners, though they understood the importance of UA

compliance, did not show interest in implementing it immediately. Rather they were

reluctant to make the changes in existing working sites because of a variety if

reasons:

a. Do not perceive as an immediate need.

b. Lack competent resources to handle the necessary implementation.

c. Third-party services were used to develop and maintain the site.

d. Making requisite changes would involve getting permissions from authorities,

which can be challenging as team members involved may be in different

cities or countries.

e. Do not wish to make changes since multiple departments are leveraging the

emails for offering services.

2. Since the website development and maintenance is outsourced (more specifically in

non-IT organizations) they were unable to allocate the task and make developers

available. Issues were also related to financial involvement for changes and priority

of activity.

3. In the case of certain sites, implementations were required to be done at the frontend

and backend. In certain cases, the frontend working team and backend working

teams were different and only have respective permissions. Frontend

developers/teams cannot make the changes in backend applications. In some cases,

the teams are in different cities and getting permissions are tough or time consuming.

 14

a. It was also observed for UA implementation that there is a need to involve

both the frontend and backend (server-side) developers, since these were

handled by different development teams.

b. Needed permissions from server team for backend implementation.

c. After getting the permissions and requisite access, then only we were able to

start the implementation.

4. Some of the websites use third-party plugins/frameworks like 'WordPress Contact us

form 7 plugins' and they rely mostly on the existing implementation of this form and

are reluctant to make any changes in the form or they do not have in-depth

understanding of the third-party plugin’s functionality.

5. Although the owner finds it good to have, they do not find it a priority job and they are

unable to deploy a developer to complete it in one go. As per this exercise, they are

making developers available when they find the time. It was time consuming to follow

up with them. The overall time taken is very high in some cases.

6. Although UA implementation looks simple technically, and the pseudo code, IDN

libraries, and requisite knowledge is readily available, they find it time consuming as

implementation is required in many places (frontend, backend, database, job

services, email service configuration, and compliance testing).

7. Most of the non-technical website development is done by outsourcing and they are

mostly based on the plugins and third-party frameworks These people are reluctant

to make any changes.

8. Another Issue faced was that there was a common validation method on the server

side that was applicable to their multiple websites. In such cases, we were not

allowed to make the changes for particular websites. The validations done at the

frontend site were overruled by the backend validations.

Observations

In IDNA, the term Internationalized Domain Name (IDN) is a domain name that contains at
least one A-label or U-label. Since 'A-label' and 'U-label' are specialist jargon, you could use
the terms 'one portion which has characters beyond letters A-Z, digits 0-9, and the hyphen (a
"U-label"), or a portion beginning with the special code 'xn--'. Refer RFC 5890,
"Internationalized Domain Names for Applications (IDNA): Definitions and Document
Framework", for details.

The levels of implementing IDNA for websites can vary depending on the specific
circumstances. In general, implementing IDNA can be somewhat challenging and requires
careful consideration of several technical and operational factors.

One of the main challenges of implementing IDNA is ensuring that the domain name is
correctly encoded and decoded between the user's browser and the web server. This
involves using the Punycode algorithm to convert non-ASCII characters to a compatible
ASCII representation that can be used in the Domain Name System (DNS). In addition,

https://www.rfc-editor.org/rfc/rfc5890.html

 15

implementing IDNA also requires ensuring that the web server, DNS, and other relevant
systems are configured to handle IDNs correctly.

Another potential challenge is ensuring that IDNA is supported by all relevant software and
systems. While most modern browsers, programming languages, and operating systems
have built-in support for IDNA, the use of older versions can result in compatibility issues for
users. For example:

● PHP versions prior to 5.3.3 (release date 22 July 2010) do not have full IDNA support
in their built-in functionality.

● Python 3.3 (release date 29 September 2012) and earlier versions have limited
support for IDNA. The IDNA module was not included in the standard library until
Python 3.4.

● Joomla started supporting IDNA with the release of Joomla 3.7.0 (release date 25
April 2017.) but had issues of IDNA convert. Joomla version 3.9 was released on 30
October 2018. Joomla does not have built-in support for IDNA 2008. The IDNA
support in Joomla is based on the PHP programming language, specifically the "intl"
extension.

● Drupal began supporting IDNA starting from Drupal 8.3.0 (released on 5 April 2017).
Drupal relies on the underlying programming language, PHP, for IDNA support.

● WordPress has integrated IDNA support since version 4.6, released on 16 August
2016, WordPress uses the PHP programming language, and the IDNA support in
PHP is provided by the "intl" extension.

Overall, implementing IDNA can require a significant amount of technical expertise and
effort, particularly for large-scale websites or those with complex infrastructure. However,
with careful planning and execution, it is possible to successfully implement IDNA for all
sites.

Broad Steps for UA Compliance of Websites

To attain UA compliance for a website, the following is the list of actions to consider:

• Register and make functional IDNs for the website that support non-ASCII characters
and is compatible with IDNA 2008 protocol. It's not mandatory to have an IDN for a
website’s UA-readiness, but it ensures that the website is accessible to users from
different language communities.

• Website to accept EAI emails in various forms such as subscriptions, feedback,
registrations, and other user interactions.

• Validate EAI emails using IDNA libraries or similar tools to ensure proper handling
and conversion of non-ASCII characters in email addresses. Verify the top-level
domain (TLD) against the TLD list published by the Internet Assigned Numbers
Authority (IANA). This additional validation ensures that the email address uses a
valid TLD.

• Storing EAI emails in database: Modify your database schema and storage systems
to accommodate EAI email addresses. Ensure that the database can handle and
store non-ASCII characters properly.

• Ensure that the search and indexing mechanisms can handle and maintain the
correct sort order of IDNs. May require specialized search algorithms or sorting
techniques as per the Unicode collation rules.

• Update website's user interfaces to reflect the support for IDNs and EAI emails.
Provide clear instructions on how users can enter and interact with non-ASCII
characters in their email addresses.

• Ensure sending and receiving of EAI emails.

 16

Learnings: Phased Approach for UA Compliance

Achieving full Universal Acceptance (UA) compliance, including the ability to validate, store,
search, send, and receive Unicode email addresses, is a process that may require
significant resources, planning, and phased implementation.

Maintaining an up-to-date TLD list can be challenging, which amounts to implementing a
cron job to regularly fetch and update the TLD list which adds complexity to the validation
process.

Implementing UA can be challenging, especially when websites are developed using third-
party frameworks or tools. The third-party may not prioritize or easily accommodate such
changes. Additionally, when EAI emails captured by the website are used by various
departments within an organization, making changes for UA becomes more complex.
Implementing UA requires coordination and buy-in from various departments within an
organization that utilize the captured email addresses for providing various services to their
customers.

Incremental implementation, instead of making widespread changes across the entire
organization all at once, is a phased approach that can be considered. By adopting a
strategic and phased approach, engaging stakeholders, and leveraging available resources
and communities, it is possible to make progress towards UA while mitigating potential
barriers.

Merely accepting Unicode email addresses does not suffice, it is necessary to understand
and address the limitations and challenges in the email server infrastructure for successful
delivery of IDN emails.

Developers are looking for a simple solution to accept Unicode characters in email
addresses without making significant changes or undergoing a security audit of website.

Hence, starting with accepting Unicode email addresses using Regex as a first step is a

practical approach, allowing gradual progress towards full UA compliance. Use of Regex

allows accommodation of a broader range of email addresses without immediately

undertaking all the complexities of full UA compliance. However, please note that email

address validation is a complex task, and it is difficult to achieve 100% accuracy with a

regular expression alone. Email address formats can vary, and there are some edge cases

that may not be covered by this basic pattern. It is recommended to combine regular

expressions with server-side validation and additional checks to ensure thorough email

address validation.

By prioritizing, allocating resources, and iterating on the implementation, websites can
evolve and become fully UA compliant over time. However, it's necessary to communicate
the limitations and potential future steps, such as transitioning to IDNA libraries for full IDN
email support to the users.

As the website evolves, subsequent phases can focus on searching, sending-receiving
Unicode email addresses. Each phase can build upon the previous one, gradually improving
the website's UA compliance over time. This iterative approach allows for thorough testing,
addressing challenges, and fine-tuning the implementation.

 17

Various Libraries and Overall IDN Implementation Flow

● There are many libraries available for IDN to ASCII converters.

● IDNA libraries are available for various languages and frameworks. Developers face
challenges in using the one suitable to them.

● The conversion and API implementation of each library varies. Certain libraries
convert the complete string, which may include subdomain, domain, and TLD, while
others only convert a single label. Some libraries require the use of specific flags,
such as UTS46 and Transit, for which developers must invest considerable effort to
comprehend their importance and purpose.

● Additionally, these libraries anticipate that the input Unicode string is in an IDN-
compatible format. Each library will either convert the Unicode input string to a
Punycode (ASCII) string or produce an error message regarding the incompatible
IDN input.

● The actual implementation of UA is not limited to using the IDNA library, but to follow
entire process from taking input from text box, splitting into subdomains and TLDs.
Implementation of TLD verification, implementing required corn jobs, splitting every
label, and validating as proper IDN composition. This sometime poses challenges to
developers and overall understanding and pseudo code is required.

● Implementors are encouraged to visit https://github.com/icann/ua-code-samples
repository which contains code samples showing how to use certain programming
languages libraries correctly to support internationalization, specifically EAI and IDNs
(IDNA2008).

● PHP Universal Compliance code samples: Implementors are encouraged to visit
https://github.com/icann/ua-code-samples/tree/master/readiness-sample-code/php
which contains code samples to provide guidelines for UA for PHP libraries.

https://github.com/icann/ua-code-samples
https://github.com/icann/ua-code-samples/tree/master/readiness-sample-code/php

 18

Annexure - I

The following is the list of website URLs that have shown interest in UA implementation.

No.
Website

Email Input
Field Type

Technology

1 https://icrmsoftware.com email WordPress

2 https://icrmmarketing.com email WordPress

3 https://b2bmedium.com email HTML Bootstrap

4 https://micromatix.net email PHP

5 https://executive81.com email PHP

6 https://sweekcollection.com email PHP

7 https://skorganic.co.in email

8 https://markspacemedia.com/ email PHP

9 https://kanishkathakur.com/ email PHP

10 https://jaidadaengineering.in/ email PHP

11 https://layouts.icrmsoftware.com/ email PHP

12 http://hawkwings.in/ email PHP

13 https://cosmeticonline.in/ email PHP

14 https://donspectacularis.com/

15 https://dordressonrent.com/ email PHP

16 https://mebazzar.com/ email PHP

17 https://cartrefs.com/ email PHP

18 https://pcianalytics.in/ PHP

19 https://www.bipinpharmaequipment.com/ email WordPress

20 https://www.indiatechpharmaexporters.com/ email WordPress

21 https://sparkweld.net/ email HTML Bootstrap

22 https://www.technosearchprocess.com/ email WordPress

23 https://www.inditechsystems.com/ email WordPress

24 https://www.mackauraadrugs.com/ text HTML Bootstrap

25 https://www.pnsafetyind.com/ email HTML Bootstrap

26 https://www.vibroscreens.net/ email HTML Bootstrap

27 https://srlabinstruments.com/ email WordPress

28 https://www.vmecranes.in/ email WordPress

29 https://rishikeshexports.in/ email WordPress

30 https://www.labtopinstruments.com/ email WordPress

31 https://www.smartmark.co.in/ email WordPress

32 https://www.thermopac.in/ email WordPress

33 https://www.manasvihitech.com/ email HTML Bootstrap

34 www.bbllogistics.com/ email WordPress

35 https://www.careersin.in/ email WordPress

36 https://www.genotekbio.com/ email WordPress

37 https://kamadhenuelevators.com/ email WordPress

38 https://liscio.in/ email WordPress

39 https://www.marlinemarine.com/ email WordPress

40 https://www.fireballsupplier.com/ email WordPress

41 https://www.vaastuurjja.com/ email WordPress

42 https://www.ficci-ilia.in/ text PHP

43 www.perfectcomputereducation.com - HTML CSS

44 www.cncentrecdac.in text WordPress

45 https://dot-tech.in email PHP

46 https://cdaccomputerclass.business.site/ email

 19

47 https://markeducation.info email WordPress

48 https://facebook.com/cdac.dahod.scope - -

49 www.bypt.in email WordPress

50 https://cdaclawgardenahmedabad.com/ email HTML Bootstrap

51 https://tdil-dc.in email PHP

52 https://www.arrowcomputers.in/ email PHP

53 https://cdacgujarat.com/ email PHP

54 https://productsearchinfotech.com/ email WordPress

55 https://globaluaday.in/ Text WordPress

56 https://evarissystems.com Text WordPress

 20

Annexure - II

UA-Ready Websites

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

1 https://cartrefs.com/ email PHP PHP Based ● Backend APIs
to validate
domain part
and TLD.

● Frontend

Script to
consume
these API's.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

Y N ● N 8th

February

2023

2 https://kanishkathakur.com/ email PHP PHP Based ● Backend APIs
to validate
domain part
and TLD.

Y N ● N 8th
February
2023

 21

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

● Frontend

Script to
consume
these API's.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

3 https://sweekcollection.com email PHP PHP based

Solution

● Backend APIs
to validate
domain part
and TLD.

● Frontend

Script to
consume
these APIs.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

Y N Y

● Received email
on ASCII but
not on EAI
email address
upon form
submission.

16th Dec

2022

https://sweekcollection.com/

 22

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

4 https://markspacemedia.com/ email PHP PHP based

Solution

● Backend APIs

to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

Y N N

● No

acknowledgme
nt mail setup.

16th Dec

2022

5 https://jaidadaengineering.in/ email PHP PHP based

Solution

● Backend APIs

to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

● Use PHP
function for
converting

Y N N

● No

acknowledgme
nt mail setup.

16th Dec

2022

https://markspacemedia.com/contactus
https://jaidadaengineering.in/

 23

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

domain part
Unicode to
Punycode.

6 https://layouts.icrmsoftware.c

om/

email PHP PHP based

Solution

● Backend APIs

to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

Y N N

● No mail

received on
ASCII and EAI
email
addresses
upon form
submission.

16th Dec

2022

7 http://hawkwings.in/ email PHP PHP based

Solution

● Backend APIs

to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

Y N Y

● Received email

on ASCII but
not on EAI
email address
upon form
submission.

16th Dec

2022

https://layouts.icrmsoftware.com/
https://layouts.icrmsoftware.com/
http://hawkwings.in/

 24

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

● Use PHP

function for
converting
domain part
Unicode to
Punycode.

8 https://cosmeticonline.in/ email PHP PHP based

Solution

● Backend APIs
to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

● Use PHP

function for
converting
domain part
Unicode to
Punycode.

Y N Y

● Received email
on ASCII but
not on EAI
email address
upon form
submission.

24th Dec

2022

9 https://dordressonrent.com/ email PHP PHP based

Solution

● Backend APIs
to validate
domain part
and TLD.

Y N N

● No mail
received on
ASCII and EAI
email

24th Dec

2022

https://cosmeticonline.in/
https://dordressonrent.com/

 25

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

● Frontend

Script to
consume
these APIs.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

addresses
upon form
submission

10 https://mebazzar.com/ email PHP PHP based

Solution

● Backend APIs
to validate
domain part
and TLD.

● Frontend

Script to
consume
these APIs.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

Y N N

● No mail
received on
ASCII and EAI
email
addresses
upon form
submission.

24th Dec

2022

https://mebazzar.com/

 26

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

11 https://sparkweld.net/ email HTML

Bootstrap

JS based

Solution

● APIs at

backend for
validating
domain and
TLD part.

● JavaScript
library used to
convert
Unicode to
Punycode.

● Write script at
frontend to
consume
these APIs.

N N Y

● Mail received

on ASCII email
and EAI
addresses

8th Dec

2022

12 https://www.mackauraadrugs.

com/

text HTML

Bootstrap

JS based

Solution

● Server-side

APIs for
validating the
domain and
TLD part.

● Script to
consume
these APIs
and Regex
pattern which
validate bare

N N Y

● Mail received

on ASCII email
and EAI
addresses

6th Dec

2022

https://sparkweld.net/
https://www.mackauraadrugs.com/
https://www.mackauraadrugs.com/

 27

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

minimum
structure of
Email
Address.

● JavaScript

library used for
non- ascii
domain part.

13 https://www.pnsafetyind.com/ email HTML

Bootstrap

JS based

Solution

● APIs at
backend for
validating
domain and
TLD part.

● JavaScript
library used to
convert
Unicode to
Punycode.

● Write script at

frontend to
consume
these APIs.

N N Y

● Mail received
on ASCII email
and EAI
addresses

6th Dec

2022

14 https://www.vibroscreens.net/ email HTML

Bootstrap

JS based

Solution

● Server-side
APIs for
validating the

N N N

● No mail
received on

8th Dec

2022

https://www.pnsafetyind.com/
https://www.vibroscreens.net/

 28

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

domain and
TLD part.

● Script to

consume
these APIs
and Regex
pattern which
validate bare
minimum
structure of
Email
Address.

● JavaScript
library used for
non- ascii
domain part.

ASCII and EAI
email
addresses
upon form
submission.

15 https://www.manasvihitech.co

m/

email HTML

Bootstrap

JS based

Solution

● Backend APIs
to validate
domain part
and TLD.

● Frontend

Script to
consume
these APIs.

N N Y

● Mail received
on ASCII email
and EAI
addresses

6th Dec

2022

https://www.manasvihitech.com/
https://www.manasvihitech.com/

 29

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

● JS based

library 'idna-
uts46-hx' used
to convert
Unicode to
respective
Punycode.

16 https://www.ficci-ilia.in/ text PHP PHP based

Solution

● Regex pattern
shared by us.

● Server-side
APIs to
validate
domain part
and TLD.

● Frontend

Script to
consume
these APIs.

● Use PHP
function for
converting
domain part
Unicode to
Punycode.

 Y N 29th Nov

2022

https://www.ficci-ilia.in/

 30

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

17 www.cncentrecdac.in text WordPres

s

JS based

Solution

● Backend APIs

to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

● JS based
library used to
convert
Unicode to
respective
Punycode.

N Y N 26th Dec

2022

18 https://dot-tech.in email PHP PHP based

Solution

● Regex pattern

shared by us.

● Server-side
APIs to
validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

Y Y N

● No

functionality.

23rd Dec

2022

http://www.cncentrecdac.in/
https://dot-tech.in/

 31

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

● Use PHP

function for
converting
domain part
Unicode to
Punycode.

19 https://productsearchinfotech.

com/

email WordPres

s

JS based

Solution

● Backend APIs
to validate
domain part
and TLD.

● Frontend
Script to
consume
these APIs.

● JS based

library 'idna-
uts46-hx' used
to convert
Unicode to
respective
Punycode.

N N N

● No mail
received on
ASCII and EAI
email
addresses
upon form
submission.

26th Dec

2022

20 https://tdil-dc.in/ email JS based

Solution

 Y

● Mail was
received on
ASCII but not

28th

September

2022

https://productsearchinfotech.com/
https://productsearchinfotech.com/
https://tdil-dc.in/index.php?option=com_users&view=quickregister&lang=en

 32

SN Website Email Input

Field Type

prior to UA

implementation

Website

develope

d with

Implement

ation for

UA

complianc

e

Changes at

frontend and

backend for

making website

UA ready

"Yes" -

stored as

U-label in

database

"No" -

Database

field not

updated

to store

UTF-8

character

Implemente

d cron job

for

validating

TLD

against

IANA TLD

list

Mail sending

utility “Y” -

supports EAI,

“N” -does not

support EAI

UA

readiness

date

on EAI email
address

21 https://globaluaday.in/ Text WordPres

s

JS based

Solution

 Y Y Y 25th March

2023

22 evarissystems.com Text WordPres

s

JA based

Solution

 Y Y Y 8th Sept

2022

Ç√

Annexure – III

Making PHP-Based Websites UA Compliant

The following is information on how to make PHP-based websites UA compliant.

The code provided here is compatible for PHP Version: 5 >= 5.3.0, PHP 7, PHP 8.

Acceptance of EAI in email field in website form

The following steps and code snippets need to be implemented at the frontend and backend.

Service also needs to be implemented for validation of top-level domains against the official

database (https://data.iana.org/TLD/tlds-alpha-by-domain.txt) from iana.org.

EAI acceptance in an email field can be achieved using the following steps:

1. Frontend allowing Unicode characters in the email field.

As stated above, HTML5 input type “email”, allows validation of ASCII emails only

and does not support emails having Unicode characters in the input, hence HTML

input element attribute “text” to be used instead.

Once we change the attribute to “text”, it allows to enter any arbitrary Unicode

characters in the input field. To make this input field to accept valid format of email

regex pattern can be used. The regex pattern can be written in JavaScript. The regex

can be used for any other language, with certain changes because of some

variations in the available features and methods.

Regex pattern:

/^(([^<>()[\]\.,;:\s@\"]+(\.[^<>()[\]\.,;:\s@\"]+)*)|(\".+\"))@(([^<>()[\]\.,;:\s@\"]+\.)+[^<>()[\]\.,;:\s@

\"]{2,})$/i

This regular expression checks for the following basic email address requirements:

− The local part (before the @ symbol) can contain any characters except for specific

special characters (<, >, (,), [,], ,, ;, :, \s, @, and "). Quoted local parts are also

allowed.

− The domain part (after the @ symbol) must have at least one dot and be followed by

at least two characters (TLD).

− The regular expression is case-insensitive (i flag at the end).

Please note that email address validation is a complex task, and it is difficult to achieve

100% accuracy with a regular expression alone. Email address formats can vary, and there

are some edge cases that may not be covered by this basic pattern. It is recommended to

combine regular expressions with server-side validation and additional checks to ensure

thorough email address validation.

 34

2. Code for converting domain part Unicode to Punycode (PHP)
- Split the email into local part and domain part (local part: left part of the @, and

domain part: right of the @ symbol)

- Convert domain part into respective Punycode (A-Label) from Unicode (U-Label).

- Use the PHP built in function idn_to_ascii() to convert to Punycode. There are

additional functions available in PHP. May like to refer the documentation is available

online. PHP: idn_to_ascii – Manual

- The function idn_to_ascii() returns the string encoded in ASCII-compatible form

(Punycode) or returns false on failure.

- This code needed to be run as backend API and should be invoked on the submit

button.

- Refer the following sample code for converting Unicode string to Punycode.

// IDN to ASCII

function convert_i2a($domain_part) {

 $ascii_result = idn_to_ascii($domain_part);

 $response = array();

 if($ascii_result) {

 $response[“result”] = “1”;

 $response[“status”] = “âœ”ï¸ Domain part is valid : ” . $domain_part;

 }

 else {

 $response[“result”] = “0”;

 $response[“status”] = “â Œ Error in domain part : ” . $domain_part;

 }

 return $response;

}

3. Top-level domain (TLD) validation

- The TLD this the end part of the email address for example in the domain name

"evaris.co.in" [.in] is the TLD part.

- TLD against the official database made available on https://data.iana.org/TLD/tlds-

alpha-by-domain.txt by iana.org which is updated daily.

- This code needs to run as cron job which will download the latest TLD.txt onto the

website’s server daily.

The following is the code that downloads a TLD file and stores it in the folder:

<?php

 $file_url_TLD = “https://data.iana.org/TLD/tlds-alpha-by-domain.txt”;

 $file_name_TLD = “TLD.txt”;

 $file_contents_TLD = file_get_contents($file_url_TLD);

 $write_file_TLD = file_put_contents($file_name_TLD,

$file_contents_TLD);

 date_default_timezone_set(‘Asia/Kolkata’);

 $date_time = date(‘d-m-y h:i:s’);

https://www.php.net/manual/en/function.idn-to-ascii.php

 35

 $flie_log_TLD = fopen(‘./downloadTLDFileLog.txt’, ‘a’);

 $string_log = “”;

 if($write_file_TLD) {

 $string_log = $date_time . ” Success : TLD File was downloaded.\n”;

 echo $string_log;

 fwrite($flie_log_TLD, $string_log) ;

 }

 else {

 unlink(‘TLD.txt’);

 $string_log = $date_time . ” Failure: TLD File downloading was failed.

\n”;

 echo $string_log;

 fwrite($flie_log_TLD, $string_log);

 }

 fclose($flie_log_TLD);

 ?>

After downloading and storing the TLD.txt file in website server, the TLD part of the domain

name is checked against this file. If present then the TLD validation is success, else not.

For IDN TLDs, pass the TLD to the idn_to_ascii() function for conversion to Punycode and

then validate against the downloaded TLD.txt file.

This code needs to run as backend API and invoked on submit button.

The code for checking the TLD is given below:

//Check TLD

function check_TLD($domain_part) {

 $response = array();

 $omain_part_array = explode(“.”, trim($domain_part));

 $TLD_string = end($domain_part_array);

 $idn_validated_TLD = idn_to_ascii($TLD_string);

 if($idn_validated_TLD) {

 $TLD_file = “./TLD.txt”;

 $TLD_file_contents = file_get_contents($TLD_file);

 $TLD_array = explode(“\n”, $TLD_file_contents);

 array_shift($TLD_array);

 array_pop($TLD_array);

 $tld = strtoupper(trim($idn_validated_TLD));

 $result = in_array($tld, $TLD_array);

 if($result) {

 $response[“result”] = “1”;

 $response[“status”] = “âœ”ï¸ Valid TLD : ” . $TLD_string;

 }

 else {

 $response[“result”] = “0”;

 36

 $response[“status”] = “â Œ Invalid TLD : ” . $TLD_string;

 }

 }

 else {

 $response[“result”] = “0”;

 $response[“status”] = “â Œ Error in TLD.” . $TLD_string;

 }

 return $response;

}

Note: To use regex-free code, visit https://github.com/icann/ua-code-samples.
For PHP Universal Compliance code samples, visit https://github.com/icann/ua-code-
samples/tree/master/readiness-sample-code/php.

https://github.com/icann/ua-code-samples
https://github.com/icann/ua-code-samples/tree/master/readiness-sample-code/php
https://github.com/icann/ua-code-samples/tree/master/readiness-sample-code/php

	About EVARIS
	Introduction
	Executive Summary
	● Understanding the platform and technology stack used while developing the websites.
	● Possible changes for making the website UA-ready.
	● Suggesting the changes along with suitable pseudo code and use of requisite library.

	UA Remediation Methodology
	Contact Database Creation
	● Email IDs extraction
	● Email verification
	Email ID Extraction and Verification Activity
	Domain Authentication

	Campaign Initiation and Status
	Campaign – Overall status:
	Country Distribution of Websites Under UASG039 Testing
	We were able to find out country details for 1,796 of the 2,010 websites that were undertaken for testing. The table below shows the breakdown of the 1,796 websites by country.
	Campaign Status Automation

	UA Implementation of 22 Websites
	Contact Form 7 Plugin-Related Issues
	● Plugin provider implements the server-side validation. In case we override the client-side validation using our UI API and validate, then also, after validation contact form plugin sends data to the server.
	● After receiving the data at server side, WordPress plugin again validates the data at server side as per server-side implementation.
	● Developer is not permitted to change the server-side code because of copyright issues, security issues where in source code is now allowed to change.

	Overall Challenges in Implementation
	● It takes time to get permissions from the client or website owner for the changes to be done on their website.
	● Since certain tasks are allocated to specific developer(s), availability of these developers is also a challenge. Takes time to get developers time to implement.
	● Since developers do not have much knowledge about Universal Acceptance and EAI, it took several calls and meetings to explain it to them and also walk through the implementation details including pseudo code and procedure.
	● It was time consuming to take necessary permissions and developers’ availability (window period for implementation) since UA implementation was not a priority.
	● Daily follow ups were required with respective parties through WhatsApp messages, email, and voice calls.
	A Typical IT Organization Setup
	A Typical Non-IT Organization Setup

	UA Implementation Challenges Faced with IT and Non-IT Organizations
	Observations
	● PHP versions prior to 5.3.3 (release date 22 July 2010) do not have full IDNA support in their built-in functionality.
	● Python 3.3 (release date 29 September 2012) and earlier versions have limited support for IDNA. The IDNA module was not included in the standard library until Python 3.4.
	● Joomla started supporting IDNA with the release of Joomla 3.7.0 (release date 25 April 2017.) but had issues of IDNA convert. Joomla version 3.9 was released on 30 October 2018. Joomla does not have built-in support for IDNA 2008. The IDNA support i...
	● Drupal began supporting IDNA starting from Drupal 8.3.0 (released on 5 April 2017). Drupal relies on the underlying programming language, PHP, for IDNA support.
	● WordPress has integrated IDNA support since version 4.6, released on 16 August 2016, WordPress uses the PHP programming language, and the IDNA support in PHP is provided by the "intl" extension.
	● There are many libraries available for IDN to ASCII converters.
	● IDNA libraries are available for various languages and frameworks. Developers face challenges in using the one suitable to them.
	● The conversion and API implementation of each library varies. Certain libraries convert the complete string, which may include subdomain, domain, and TLD, while others only convert a single label. Some libraries require the use of specific flags, su...
	● Additionally, these libraries anticipate that the input Unicode string is in an IDN-compatible format. Each library will either convert the Unicode input string to a Punycode (ASCII) string or produce an error message regarding the incompatible IDN ...
	● The actual implementation of UA is not limited to using the IDNA library, but to follow entire process from taking input from text box, splitting into subdomains and TLDs. Implementation of TLD verification, implementing required corn jobs, splittin...
	● Implementors are encouraged to visit https://github.com/icann/ua-code-samples repository which contains code samples showing how to use certain programming languages libraries correctly to support internationalization, specifically EAI and IDNs (IDN...
	● PHP Universal Compliance code samples: Implementors are encouraged to visit https://github.com/icann/ua-code-samples/tree/master/readiness-sample-code/php which contains code samples to provide guidelines for UA for PHP libraries.
	●

	Annexure - I
	Annexure - II
	Annexure – III
	Making PHP-Based Websites UA Compliant

